Secondary succession

Last updated
An example of secondary succession by stages:
A stable deciduous forest community.
A disturbance, such as a fire, starts.
The fire destroys the vegetation.
The fire leaves behind empty, but not destroyed soil.
Grasses and other herbaceous plants grow back first.
Small bushes and trees begin to colonize the public area.
Fast-growing evergreen trees and bamboo trees develop to their fullest, while shade-tolerant trees develop in the understory.
The short-lived and shade-intolerant evergreen trees die as the larger deciduous trees overtop them. The ecosystem is now back to a similar state to where it began. Secondary Succession.png
An example of secondary succession by stages:
  1. A stable deciduous forest community.
  2. A disturbance, such as a fire, starts.
  3. The fire destroys the vegetation.
  4. The fire leaves behind empty, but not destroyed soil.
  5. Grasses and other herbaceous plants grow back first.
  6. Small bushes and trees begin to colonize the public area.
  7. Fast-growing evergreen trees and bamboo trees develop to their fullest, while shade-tolerant trees develop in the understory.
  8. The short-lived and shade-intolerant evergreen trees die as the larger deciduous trees overtop them. The ecosystem is now back to a similar state to where it began.

Secondary succession is the secondary ecological succession of a plant's life. As opposed to the first, primary succession, secondary succession is a process started by an event (e.g. forest fire, harvesting, hurricane, etc.) that reduces an already established ecosystem (e.g. a forest or a wheat field) to a smaller population of species, and as such secondary succession occurs on preexisting soil whereas primary succession usually occurs in a place lacking soil. Many factors can affect secondary succession, such as trophic interaction, initial composition, and competition-colonization trade-offs. [1] The factors that control the increase in abundance of a species during succession may be determined mainly by seed production and dispersal, micro climate; landscape structure (habitat patch size and distance to outside seed sources); [1] bulk density, pH, and soil texture (sand and clay). [2]

Contents

Secondary succession is the ecological succession that occurs after the initial succession has been disrupted and some plants and animals still exist. It is usually faster than primary succession as soil is already present, and seeds, roots, and the underground vegetative organs of plants may still survive in the soil.

Examples

Imperata

Imperata grasslands are caused by human activities such as logging, forest clearing for shifting cultivation, agriculture and grazing, and also by frequent fires. The latter is a frequent result of human interference. [3] However, when not maintained by frequent fires and human disturbances, they regenerate naturally and speedily to secondary young forest. The time of succession in Imperata grassland (for example in Samboja Lestari area), Imperata cylindrica has the highest coverage but it becomes less dominant from the fourth year onwards. While Imperata decreases, the percentage of shrubs and young trees clearly increases with time. In the burned plots, Melastoma malabathricum, Eupatorium inulaefolium, Ficus sp., and Vitex pinnata. strongly increase with the age of regeneration, but these species are commonly found in the secondary forest. [4]

Soil properties change during secondary succession in Imperata grassland area. The effects of secondary succession on soil are strongest in the A-horizon (0–10 cm (0.0–3.9 in)), where an increase in carbon stock, N, and C/N ratio, and a decrease in bulk density and pH are observed. Soil carbon stocks also increase upon secondary succession from Imperata grassland to secondary forest. [2]

Oak and hickory forest

A classic example of secondary succession occurs in oak and hickory forests cleared by wildfire. Wildfires will burn most vegetation and kill those animals unable to flee the area. Their nutrients, however, are returned to the ground in the form of ash. Thus, even when areas are devoid of life due to severe fires, the area will soon be ready for new life to take hold. Before the fire, the vegetation was dominated by tall trees with access to the major plant energy resource: sunlight. Their height gave them access to sunlight while also shading the ground and other low-lying species. After the fire, though, these trees are no longer dominant. Thus, the first plants to grow back are usually annual plants followed within a few years by quickly growing and spreading grasses and other pioneer species. Due to, at least in part, changes in the environment brought on by the growth of the grasses and other species, over many years, shrubs will emerge along with small pine, oak, and hickory trees. These organisms are called intermediate species. Eventually, over 150 years, the forest will reach its equilibrium point where species composition is no longer changing and resembles the community before the fire. This equilibrium state is referred to as the climax community, which will remain stable until the next disturbance. [5]

The secondary succession of an oak and hickory forest Figure 45 06 16.jpg
The secondary succession of an oak and hickory forest

Post-fire succession

Soil

Generation of carbonates from burnt plant material following fire disturbance causes an initial increase in soil pH that can affect the rate of secondary succession, as well as what types of organisms will be able to thrive. Soil composition prior to fire disturbance also influences secondary succession, both in rate and type of dominant species growth. For example, high sand concentration was found to increase the chances of primary Pteridium over Imperata growth in Imperata grassland. [6] The byproducts of combustion have been shown to affect secondary succession by soil microorganisms. For example, certain fungal species such as Trichoderma polysporum and Penicillium janthinellum have a significantly decreased success rate in spore germination within fire-affected areas, reducing their ability to recolonize. [7]

Vegetation

Vegetation structure is affected by fire. In some types of ecosystems this creates a process of renewal. Following a fire, early successional species disperse and establish first. This is followed by late-successional species. Species that are fire intolerant are those that are more flammable and are desolated by fire. More tolerant species are able to survive or disperse in the event of fire. The occurrence of fire leads to the establishment of deadwood and snags in forests. This creates habitat and resources for a variety of species.

Fire can act as a seed-dispersing stimulant. Many species require fire events to reproduce, disperse, and establish. For example, the knobcone pine has closed cones that open for dispersal when exposed to heat caused by forest fires. It grows in clusters because of this limited method of seed dispersal. A tough fire resistant outer bark and lack of low branches help the knobcone pine survive fire with minimal damage. [8]

Related Research Articles

<span class="mw-page-title-main">Grassland</span> Area with vegetation dominated by grasses

A grassland is an area where the vegetation is dominated by grasses (Poaceae). However, sedge (Cyperaceae) and rush (Juncaceae) can also be found along with variable proportions of legumes, like clover, and other herbs. Grasslands occur naturally on all continents except Antarctica and are found in most ecoregions of the Earth. Furthermore, grasslands are one of the largest biomes on Earth and dominate the landscape worldwide. There are different types of grasslands: natural grasslands, semi-natural grasslands, and agricultural grasslands. They cover 31–69% of the Earth's land area.

<span class="mw-page-title-main">Pioneer species</span> First species to colonize or inhabit damaged ecosystems

Pioneer species are resilient species that are the first to colonize barren environments, or to repopulate disrupted biodiverse steady-state ecosystems as part of ecological succession. A number of kinds of events can create good conditions for pioneers, including disruption by natural disasters, such as wildfire, flood, mudslide, lava flow or a climate-related extinction event or by anthropogenic habitat destruction, such as through land clearance for agriculture or construction or industrial damage. Pioneer species play an important role in creating soil in primary succession, and stabilizing soil and nutrients in secondary succession.

<span class="mw-page-title-main">Ecological succession</span> Process of change in the species structure of an ecological community over time

Ecological succession is the process of change in the species that make up an ecological community over time.

<i>Bromus tectorum</i> Species of grass

Bromus tectorum, known as downy brome, drooping brome or cheatgrass, is a winter annual grass native to Europe, southwestern Asia, and northern Africa, but has become invasive in many other areas. It now is present in most of Europe, southern Russia, Japan, South Africa, Australia, New Zealand, Iceland, Greenland, North America and western Central Asia. In the eastern US B. tectorum is common along roadsides and as a crop weed, but usually does not dominate an ecosystem. It has become a dominant species in the Intermountain West and parts of Canada, and displays especially invasive behavior in the sagebrush steppe ecosystems where it has been listed as noxious weed. B. tectorum often enters the site in an area that has been disturbed, and then quickly expands into the surrounding area through its rapid growth and prolific seed production.

<i>Pinus pinaster</i> Species of plant

Pinus pinaster, the maritime pine or cluster pine, is a pine native to the south Atlantic Europe region and parts of the western Mediterranean. It is a hard, fast growing pine bearing small seeds with large wings.

<span class="mw-page-title-main">Secondary forest</span> Forest or woodland area which has re-grown after a timber harvest

A secondary forest is a forest or woodland area which has regenerated through largely natural processes after human-caused disturbances, such as timber harvest or agriculture clearing, or equivalently disruptive natural phenomena. It is distinguished from an old-growth forest, which has not recently undergone such disruption, and complex early seral forest, as well as third-growth forests that result from harvest in second growth forests. Secondary forest regrowing after timber harvest differs from forest regrowing after natural disturbances such as fire, insect infestation, or windthrow because the dead trees remain to provide nutrients, structure, and water retention after natural disturbances. Secondary forests are notably different from primary forests in their composition and biodiversity; however, they may still be helpful in providing habitat for native species, preserving watersheds, and restoring connectivity between ecosystems.

<span class="mw-page-title-main">Seed dispersal</span> Movement or transport of seeds away from the parent plant

In spermatophyte plants, seed dispersal is the movement, spread or transport of seeds away from the parent plant. Plants have limited mobility and rely upon a variety of dispersal vectors to transport their seeds, including both abiotic vectors, such as the wind, and living (biotic) vectors such as birds. Seeds can be dispersed away from the parent plant individually or collectively, as well as dispersed in both space and time. The patterns of seed dispersal are determined in large part by the dispersal mechanism and this has important implications for the demographic and genetic structure of plant populations, as well as migration patterns and species interactions. There are five main modes of seed dispersal: gravity, wind, ballistic, water, and by animals. Some plants are serotinous and only disperse their seeds in response to an environmental stimulus. These modes are typically inferred based on adaptations, such as wings or fleshy fruit. However, this simplified view may ignore complexity in dispersal. Plants can disperse via modes without possessing the typical associated adaptations and plant traits may be multifunctional.

<span class="mw-page-title-main">Primary succession</span> Gradual growth and change of an ecosystem on new substrate

Primary succession is the beginning step of ecological succession after an extreme disturbance, which usually occurs in an environment devoid of vegetation and other organisms. These environments are typically lacking in soil, as disturbances like lava flow or retreating glaciers scour the environment clear of nutrients.

<span class="mw-page-title-main">Fire ecology</span> Study of fire in ecosystems

Fire ecology is a scientific discipline concerned with the effects of fire on natural ecosystems. Many ecosystems, particularly prairie, savanna, chaparral and coniferous forests, have evolved with fire as an essential contributor to habitat vitality and renewal. Many plant species in fire-affected environments use fire to germinate, establish, or to reproduce. Wildfire suppression not only endangers these species, but also the animals that depend upon them.

<span class="mw-page-title-main">Myrmecochory</span> Seed dispersal by ants

Myrmecochory ( ; from Ancient Greek: μύρμηξ, romanized: mýrmēks and χορεία khoreíā is seed dispersal by ants, an ecologically significant ant–plant interaction with worldwide distribution. Most myrmecochorous plants produce seeds with elaiosomes, a term encompassing various external appendages or "food bodies" rich in lipids, amino acids, or other nutrients that are attractive to ants. The seed with its attached elaiosome is collectively known as a diaspore. Seed dispersal by ants is typically accomplished when foraging workers carry diaspores back to the ant colony, after which the elaiosome is removed or fed directly to ant larvae. Once the elaiosome is consumed, the seed is usually discarded in underground middens or ejected from the nest. Although diaspores are seldom distributed far from the parent plant, myrmecochores also benefit from this predominantly mutualistic interaction through dispersal to favourable locations for germination, as well as escape from seed predation.

<span class="mw-page-title-main">Disturbance (ecology)</span> Temporary change in environmental conditions that causes a pronounced change in an ecosystem

In ecology, a disturbance is a temporary change in environmental conditions that causes a pronounced change in an ecosystem. Disturbances often act quickly and with great effect, to alter the physical structure or arrangement of biotic and abiotic elements. A disturbance can also occur over a long period of time and can impact the biodiversity within an ecosystem.

The soil seed bank is the natural storage of seeds, often dormant, within the soil of most ecosystems. The study of soil seed banks started in 1859 when Charles Darwin observed the emergence of seedlings using soil samples from the bottom of a lake. The first scientific paper on the subject was published in 1882 and reported on the occurrence of seeds at different soil depths. Weed seed banks have been studied intensely in agricultural science because of their important economic impacts; other fields interested in soil seed banks include forest regeneration and restoration ecology.

<span class="mw-page-title-main">Seed predation</span> Feeding on seeds as a main or exclusive food source

Seed predation, often referred to as granivory, is a type of plant-animal interaction in which granivores feed on the seeds of plants as a main or exclusive food source, in many cases leaving the seeds damaged and not viable. Granivores are found across many families of vertebrates as well as invertebrates ; thus, seed predation occurs in virtually all terrestrial ecosystems. Seed predation is commonly divided into two distinctive temporal categories, pre-dispersal and post-dispersal predation, which affect the fitness of the parental plant and the dispersed offspring, respectively. Mitigating pre- and post-dispersal predation may involve different strategies. To counter seed predation, plants have evolved both physical defenses and chemical defenses. However, as plants have evolved seed defenses, seed predators have adapted to plant defenses. Thus, many interesting examples of coevolution arise from this dynamic relationship.

<span class="mw-page-title-main">Boreal ecosystem</span> Subarctic terrestrial ecozone

A boreal ecosystem is an ecosystem with a subarctic climate located in the Northern Hemisphere, approximately between 50° and 70°N latitude. These ecosystems are commonly known as taiga and are located in parts of North America, Europe, and Asia. The ecosystems that lie immediately to the south of boreal zones are often called hemiboreal. There are a variety of processes and species that occur in these areas as well.

<i>Vitex pinnata</i> Species of tree

Vitex pinnata is a tree of the family Lamiaceae. It is native to south and south east Asia. It grows slowly, ultimately reaching 20 metres in height with 1–3 m. circumference trunk. It features a grey-brown-yellow bark. Its leaves are scented.

<span class="mw-page-title-main">Assisted natural regeneration</span>

Assisted natural regeneration (ANR) is the human protection and preservation of natural tree seedlings in forested areas. Seedlings are, in particular, protected from undergrowth and extremely flammable plants such as Imperata grass. Though there is no formal definition or methodology, the overall goal of ANR is to create and improve forest productivity. It typically involves the reduction or removal of barriers to natural regeneration such as soil degradation, competition with weeds, grasses or other vegetation, and protection against disturbances, which can all interfere with growth. In addition to protection efforts, new trees are planted when needed or wanted. With ANR, forests grow faster than they would naturally, resulting in a significant contribution to carbon sequestration efforts. It also serves as a cheaper alternative to reforestation due to decreased nursery needs.

A seed bank stores seeds from plants and is significant in preserving plant genetic diversity. Seed banks can be categorized according to their location and the ecological functions they serve. The primary types include soil seed banks, which are found in terrestrial environments; wetland seed banks, located in aquatic habitats; and canopy seed banks, present in the upper layers of forest ecosystems. Each type of seed contributes uniquely to plant biodiversity, ecosystem resilience and human well-being. Also, they are unique in the way they retain their seed. For example, in canopy seed banks or aerial seed banks, the seeds are stored in the canopies of trees and plants.

<span class="mw-page-title-main">Plant ecology</span> The study of effect of the environment on the abundance and distribution of plants

Plant ecology is a subdiscipline of ecology that studies the distribution and abundance of plants, the effects of environmental factors upon the abundance of plants, and the interactions among plants and between plants and other organisms. Examples of these are the distribution of temperate deciduous forests in North America, the effects of drought or flooding upon plant survival, and competition among desert plants for water, or effects of herds of grazing animals upon the composition of grasslands.

<span class="mw-page-title-main">Gap dynamics</span>

Gap dynamics refers to the pattern of plant growth that occurs following the creation of a forest gap, a local area of natural disturbance that results in an opening in the canopy of a forest. Gap dynamics are a typical characteristic of both temperate and tropical forests and have a wide variety of causes and effects on forest life.

<span class="mw-page-title-main">Complex early seral forest</span> Type of ecosystem present after a major disturbance

Complex early seral forests, or snag forests, are ecosystems that occupy potentially forested sites after a stand-replacement disturbance and before re-establishment of a closed forest canopy. They are generated by natural disturbances such as wildfire or insect outbreaks that reset ecological succession processes and follow a pathway that is influenced by biological legacies that were not removed during the initial disturbance. Complex early seral forests develop with rich biodiversity because the remaining biomass provides resources to many life forms and because of habitat heterogeneity provided by the disturbances that generated them. In this and other ways, complex early seral forests differ from simplified early successional forests created by logging. Complex early seral forest habitat is threatened from fire suppression, thinning, and post-fire or post-insect outbreak logging.

References

  1. 1 2 Cook, W.M.; Yao, J.; Forster, B.L.; Holt, R.D.; Patricks, L.B. (2005). "Secondary succession in an experimentally fragmented landscape: Community pattern across space and time" (PDF). Ecology. 86 (5): 1267–1279. doi:10.1890/04-0320. hdl: 1808/16487 .
  2. 1 2 Van der Kamp, J.; Yassir, I.; Buurman, P. (2009). "Soil carbon changes upon secondary succession in Imperata grasslands (East Kalimantan, Indonesia)". Geoderma. 149 (1–2): 76–83. doi:10.1016/j.geoderma.2008.11.033.
  3. MacKinnon, K., Hatta, G., Halim, H., Mangalik, A., 1996. Ecology of Kalimantan. The ecology of Indonesia Seri Vol. III
  4. Yassir, I.; Van der Kamp, J.; Buurman, P. (2010). "Secondary succession after fire in Imperata grasslands of East Kalimantan, Indonesia". Agriculture, Ecosystems and Environment. 137 (1–2): 172–182. doi:10.1016/j.agee.2010.02.001.
  5. "45.6 Community Ecology". OpenStax CNX. Retrieved 2017-07-30.
  6. Yassir, I. (15 April 2010). "Secondary succession after fire in ImperataIndonesia". Agriculture, Ecosystems & Environment. 137 (1–2): 172–182. doi:10.1016/j.agee.2010.02.001.
  7. Widden, P. (March 1975). "The effects of a forest fire on soil microfungi". Soil Biology and Biochemistry. 7 (2): 125–138. doi:10.1016/0038-0717(75)90010-3.
  8. Burczyk, Jaroslaw; Adams, W. T.; Shimizu, Jarbas Y. (3 October 1996). "Mating patterns and pollen dispersal in a natural knobcone pine (Pinus attenuata Lemmon.) stand". Heredity. 77 (3): 251–260. doi:10.1038/sj.hdy.6880410.