Selectable marker

Last updated

Selectable markers are a genes introduced into a cell, especially a bacterium or to cells in culture, that confer a traits suitable for artificial selection. They are a type of reporter gene used in laboratory microbiology, molecular biology, and genetic engineering to indicate the success of a transfection or other procedure meant to introduce foreign DNA into a cell. Selectable markers are often antibiotic resistance genes: bacteria that have been subjected to a procedure to introduce foreign DNA are grown on a medium containing an antibiotic, and those bacterial colonies that can grow have successfully taken up and expressed the introduced genetic material. Normally, the genes encoding resistance to antibiotics such as ampicillin, chloramphenicol, tetracycline, kanamycin, etc., are considered useful selectable markers for E. coli .

Contents

Modus operandi

The non-recombinants are separated from recombinants; that is, an r-DNA is introduced in bacteria, and some bacteria are successfully transformed while some remain non-transformed. When grown on a medium containing ampicillin, bacteria die due to lack of ampicillin resistance. The position is later noted on nitrocellulose paper and separated out to move them to a nutrient medium for mass production of the required product. An alternative to a selectable marker is a screenable marker, which can also be denoted as a reporter gene, which allows the researcher to distinguish between wanted and unwanted cells, such as between blue and white colonies. These wanted or unwanted cells are simply non-transformed cells that were unable to take up the gene during the experiment.[ citation needed ]

Positive and Negative

For molecular biology research, different types of markers may be used based on the selection sought. These include:

Common examples

Examples of selectable markers include:

Future developments

In the future, alternative marker technologies will need to be used more often to, at the least, assuage concerns about their persistence into the final product. It is also possible that markers will be replaced entirely by future techniques which use removable markers, and others which do not use markers at all, instead relying on co-transformation, homologous recombination, and recombinase-mediated excision. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Plasmid</span> Small DNA molecule within a cell

A plasmid is a small, extrachromosomal DNA molecule within a cell that is physically separated from chromosomal DNA and can replicate independently. They are most commonly found as small circular, double-stranded DNA molecules in bacteria; however, plasmids are sometimes present in archaea and eukaryotic organisms. In nature, plasmids often carry genes that benefit the survival of the organism and confer selective advantage such as antibiotic resistance. While chromosomes are large and contain all the essential genetic information for living under normal conditions, plasmids are usually very small and contain only additional genes that may be useful in certain situations or conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms. In the laboratory, plasmids may be introduced into a cell via transformation. Synthetic plasmids are available for procurement over the internet.

<span class="mw-page-title-main">Cloning vector</span> Small piece of maintainable DNA

A cloning vector is a small piece of DNA that can be stably maintained in an organism, and into which a foreign DNA fragment can be inserted for cloning purposes. The cloning vector may be DNA taken from a virus, the cell of a higher organism, or it may be the plasmid of a bacterium. The vector contains features that allow for the convenient insertion of a DNA fragment into the vector or its removal from the vector, for example through the presence of restriction sites. The vector and the foreign DNA may be treated with a restriction enzyme that cuts the DNA, and DNA fragments thus generated contain either blunt ends or overhangs known as sticky ends, and vector DNA and foreign DNA with compatible ends can then be joined by molecular ligation. After a DNA fragment has been cloned into a cloning vector, it may be further subcloned into another vector designed for more specific use.

<span class="mw-page-title-main">Molecular genetics</span> Scientific study of genes at the molecular level

Molecular genetics is a branch of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the structure and/or function of genes in an organism's genome using genetic screens. 

<span class="mw-page-title-main">Transformation (genetics)</span> Genetic alteration of a cell by uptake of genetic material from the environment

In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to take place, the recipient bacterium must be in a state of competence, which might occur in nature as a time-limited response to environmental conditions such as starvation and cell density, and may also be induced in a laboratory.

<span class="mw-page-title-main">Auxotrophy</span> Inability to synthesize an organic compound required for growth

Auxotrophy is the inability of an organism to synthesize a particular organic compound required for its growth. An auxotroph is an organism that displays this characteristic; auxotrophic is the corresponding adjective. Auxotrophy is the opposite of prototrophy, which is characterized by the ability to synthesize all the compounds needed for growth.

<span class="mw-page-title-main">Growth medium</span> Solid, liquid or gel used to grow microorganisms or cells

A growth medium or culture medium is a solid, liquid, or semi-solid designed to support the growth of a population of microorganisms or cells via the process of cell proliferation or small plants like the moss Physcomitrella patens. Different types of media are used for growing different types of cells.

<span class="mw-page-title-main">Kanamycin A</span> Antibiotic

Kanamycin A, often referred to simply as kanamycin, is an antibiotic used to treat severe bacterial infections and tuberculosis. It is not a first line treatment. It is used by mouth, injection into a vein, or injection into a muscle. Kanamycin is recommended for short-term use only, usually from 7 to 10 days. As with most antibiotics, it is ineffective in viral infections.

In biology, a gene cassette is a type of mobile genetic element that contains a gene and a recombination site. Each cassette usually contains a single gene and tends to be very small; on the order of 500–1,000 base pairs. They may exist incorporated into an integron or freely as circular DNA. Gene cassettes can move around within an organism's genome or be transferred to another organism in the environment via horizontal gene transfer. These cassettes often carry antibiotic resistance genes. An example would be the kanMX cassette which confers kanamycin resistance upon bacteria.

<span class="mw-page-title-main">Efflux pump</span> Protein complexes that move compounds, generally toxic, out of bacterial cells

An efflux pump is an active transporter in cells that moves out unwanted material. Efflux pumps are an important component in bacteria in their ability to remove antibiotics. The efflux could also be the movement of heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals, bacterial metabolites and neurotransmitters. All microorganisms, with a few exceptions, have highly conserved DNA sequences in their genome that encode efflux pumps. Efflux pumps actively move substances out of a microorganism, in a process known as active efflux, which is a vital part of xenobiotic metabolism. This active efflux mechanism is responsible for various types of resistance to bacterial pathogens within bacterial species - the most concerning being antibiotic resistance because microorganisms can have adapted efflux pumps to divert toxins out of the cytoplasm and into extracellular media.

<span class="mw-page-title-main">Orotidine 5'-phosphate decarboxylase</span>

Orotidine 5'-phosphate decarboxylase or orotidylate decarboxylase is an enzyme involved in pyrimidine biosynthesis. It catalyzes the decarboxylation of orotidine monophosphate (OMP) to form uridine monophosphate (UMP). The function of this enzyme is essential to the de novo biosynthesis of the pyrimidine nucleotides uridine triphosphate, cytidine triphosphate, and thymidine triphosphate. OMP decarboxylase has been a frequent target for scientific investigation because of its demonstrated extreme catalytic efficiency and its usefulness as a selection marker for yeast strain engineering.

A shuttle vector is a vector constructed so that it can propagate in two different host species. Therefore, DNA inserted into a shuttle vector can be tested or manipulated in two different cell types. The main advantage of these vectors is they can be manipulated in E. coli, then used in a system which is more difficult or slower to use.

Plant transformation vectors are plasmids that have been specifically designed to facilitate the generation of transgenic plants. The most commonly used plant transformation vectors are T-DNA binary vectors and are often replicated in both E. coli, a common lab bacterium, and Agrobacterium tumefaciens, a plant-virulent bacterium used to insert the recombinant DNA into plants.

An origin of transfer (oriT) is a short sequence ranging from 40-500 base pairs in length that is necessary for the transfer of DNA from a gram-negative bacterial donor to recipient during bacterial conjugation. The transfer of DNA is a critical component for antimicrobial resistance within bacterial cells and the oriT structure and mechanism within plasmid DNA is complementary to its function in bacterial conjugation. The first oriT to be identified and cloned was on the RK2 (IncP) conjugative plasmid, which was done by Guiney and Helinski in 1979.

URA3 is a gene on chromosome V in Saccharomyces cerevisiae (yeast). Its systematic name is YEL021W. URA3 is often used in yeast research as a "marker gene", that is, a gene to label chromosomes or plasmids. URA3 encodes Orotidine 5'-phosphate decarboxylase (ODCase), which is an enzyme that catalyzes one reaction in the synthesis of pyrimidine ribonucleotides (a component of RNA).

In molecular cloning, a vector is any particle used as a vehicle to artificially carry a foreign nucleic sequence – usually DNA – into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors are an origin of replication, a multicloning site, and a selectable marker.

<span class="mw-page-title-main">Plasmid-mediated resistance</span> Antibiotic resistance caused by a plasmid

Plasmid-mediated resistance is the transfer of antibiotic resistance genes which are carried on plasmids. Plasmids possess mechanisms that ensure their independent replication as well as those that regulate their replication number and guarantee stable inheritance during cell division. By the conjugation process, they can stimulate lateral transfer between bacteria from various genera and kingdoms. Numerous plasmids contain addiction-inducing systems that are typically based on toxin-antitoxin factors and capable of killing daughter cells that don't inherit the plasmid during cell division. Plasmids often carry multiple antibiotic resistance genes, contributing to the spread of multidrug-resistance (MDR). Antibiotic resistance mediated by MDR plasmids severely limits the treatment options for the infections caused by Gram-negative bacteria, especially family Enterobacteriaceae. The global spread of MDR plasmids has been enhanced by selective pressure from antimicrobial medications used in medical facilities and when raising animals for food.

<i>Cyanidioschyzon</i> Species of alga

Cyanidioschyzon merolae is a small (2μm), club-shaped, unicellular haploid red alga adapted to high sulfur acidic hot spring environments. The cellular architecture of C. merolae is extremely simple, containing only a single chloroplast and a single mitochondrion and lacking a vacuole and cell wall. In addition, the cellular and organelle divisions can be synchronized. For these reasons, C. merolae is considered an excellent model system for study of cellular and organelle division processes, as well as biochemistry and structural biology. The organism's genome was the first full algal genome to be sequenced in 2004; its plastid was sequenced in 2000 and 2003, and its mitochondrion in 1998. The organism has been considered the simplest of eukaryotic cells for its minimalist cellular organization.

<span class="mw-page-title-main">Molecular cloning</span> Set of methods in molecular biology

Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA. Molecular cloning methods are central to many contemporary areas of modern biology and medicine.

The RK2 Plasmid is a broad-host-range plasmid belonging to the incP incompatibility group It is notable for its ability to replicate in a wide variety of single-celled organisms, which makes it suitable as a genetic engineering tool. It is capable of transfer, replication, and maintenance in most genera of Gram-negative bacteria. RK2 may sometimes be referred to as pRK2, which is also the name of another, unrelated plasmid. Other names for RK2 include R18, R68, RP1, and RP4. These were all separate isolates, and later found to be identical plasmids. The IncP-1 plasmid group of which RK2 is a part has been described as "highly potent, self-transmissible, selfish DNA molecules with a complicated regulatory circuit"

Streptomyces lavendulae is a species of bacteria from the genus Streptomyces. It is isolated from soils globally and is known for its production of medically useful biologically active metabolites. To see a photo of this organism click here.

References

  1. "positive selection". Scitable. Nature. Retrieved 29 September 2011.
  2. "negative selection". Scitable. Nature. Retrieved 29 September 2011.
  3. Callmigration.org: Gene targeting
  4. Jang, Chuan-Wei; Magnuson, Terry (20 February 2013). "A Novel Selection Marker for Efficient DNA Cloning and Recombineering in E. coli". PLOS ONE. 8 (2): e57075. Bibcode:2013PLoSO...857075J. doi: 10.1371/journal.pone.0057075 . PMC   3577784 . PMID   23437314.
  5. Boeke JD; LaCroute F; Fink GR (1984). "A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance". Mol. Gen. Genet. 197 (2): 345–6. doi:10.1007/bf00330984. PMID   6394957. S2CID   28881589.
  6. Goldstein, Daniel A.; Tinland, Bruno; Gilbertson, Lawrence A.; Staub, J.M.; Bannon, G.A.; Goodman, R.E.; McCoy, R.L.; Silvanovich, A. (2005). "Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies". Journal of Applied Microbiology . 99 (1). Society for Applied Microbiology (Wiley): 7–23. doi:10.1111/j.1365-2672.2005.02595.x. ISSN   1364-5072. PMID   15960661. S2CID   40454719.