Small nucleolar RNA U3

Last updated
U3
Metazoan U3 secondary structure.png
Metazoan U3 RNA secondary structure and sequence conservation
Identifiers
SymbolU3
Alt. SymbolsRNU3P2,
Rfam RF00012
NCBI Gene 26844
HGNC 10176
OMIM 180710
Other data
RNA type snoRNA
Domain(s) Eukaryota;
PDB structures PDBe

In molecular biology, U3 snoRNA is a non-coding RNA found predominantly in the nucleolus. U3 has C/D box motifs that technically make it a member of the box C/D class of snoRNAs; however, unlike other C/D box snoRNAs, it has not been shown to direct 2'-O-methylation of other RNAs. Rather, U3 is thought to guide site-specific cleavage of ribosomal RNA (rRNA) during pre-rRNA processing. [1]

Contents

The box C/D element is a subset of the six short sequence elements found in all U3 snoRNAs, namely boxes A, A', B, C, C', and D. [2] The U3 snoRNA secondary structure is characterized by a small 5' domain (with boxes A and A'), and a larger 3' domain (with boxes B, C, C', and D), the two domains being linked by a single-stranded hinge. Boxes B and C form the B/C motif, which appears to be exclusive to U3 snoRNAs, and boxes C' and D form the C'/D motif. The latter is functionally similar to the C/D motifs found in other snoRNAs. The 5' domain and the hinge region act as a pre-rRNA-binding domain. The 3' domain has conserved protein-binding sites. Both the box B/C and box C'/D motifs are sufficient for nuclear retention of U3 snoRNA. The box C'/D motif is also necessary for nucleolar localization, stability and hyper-methylation of U3 snoRNA. [3] Both box B/C and C'/D motifs are involved in specific protein interactions and are necessary for the rRNA processing functions of U3 snoRNA.

Species-specific secondary structure models

S. cerevisiae secondary structure determined by chemical mapping of U3A RNA in a purified snoRNP is available. [4] A human structure model has also been proposed. [5] Like yeast and human, protozoan protist Entamoeba histolytica : a primitive eukaryote adopted the same conserved secondary structure of U3 snoRNA. [6] Four consensus structures specific to metazoa, fungi, plants and basal eukaryotes have been proposed. [7]

See also

Related Research Articles

In molecular biology, Small nucleolar RNAs (snoRNAs) are a class of small RNA molecules that primarily guide chemical modifications of other RNAs, mainly ribosomal RNAs, transfer RNAs and small nuclear RNAs. There are two main classes of snoRNA, the C/D box snoRNAs, which are associated with methylation, and the H/ACA box snoRNAs, which are associated with pseudouridylation. SnoRNAs are commonly referred to as guide RNAs but should not be confused with the guide RNAs that direct RNA editing in trypanosomes.

Small nucleolar RNA R32/R81/Z41 Non-coding RNA molecule which functions in the modification of other small nuclear RNAs

In molecular biology, Small nucleolar RNA Z41 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA. snoRNA Z41 belongs to the C/D box class of snoRNAs which contain the conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. Plant snoRNA Z41 was identified in screens of Arabidopsis thaliana.

Small nucleolar RNA Z102/R77

In molecular biology, Small nucleolar RNA RZ102/R77 refers to a group of related non-coding RNA (ncRNA) molecules which function in the biogenesis of other small nuclear RNAs (snRNAs). These small nucleolar RNAs (snoRNAs) are modifying RNAs and usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis.

Small nucleolar RNA R21

In molecular biology, Small nucleolar RNA R21 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA. snoRNA R21 belongs to the C/D box class of snoRNAs which contain the conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. Plant snoRNA R21 was identified in a screen of Arabidopsis thaliana .

Small nucleolar RNA R43

In molecular biology, Small nucleolar RNA R43 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA. snoRNA R43 belongs to the C/D box class of snoRNAs which contain the conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. Plant snoRNA R43 was identified in a screen of Arabidopsis thaliana.

Small nucleolar RNA snoR1

In molecular biology, the Small nucleolar RNA snoR1 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA. snoRNA snoR1 belongs to the C/D box class of snoRNAs which contain the conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. Plant snoRNA snoR1 was identified in a screen of Arabidopsis thaliana.

Small nucleolar RNA snoR28

In molecular biology, Small nucleolar RNA R28 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA. snoRNA R28 belongs to the C/D box class of snoRNAs which contain the conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. Plant snoRNA R28 was identified in a screen of Arabidopsis thaliana.

Small nucleolar RNA snoR60

In molecular biology, Small nucleolar RNA snoR60 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA. snoRNA snoR60 belongs to the C/D box class of snoRNAs which contain the conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. Plant snoRNA snoR60 was identified in a screen of Arabidopsis thaliana.

Small nucleolar RNA SNORD15

In molecular biology, SNORD15 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD34

In molecular biology, snoRNA U34 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA SNORD82

In molecular biology, snoRNA U82 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

Small nucleolar RNA snR53

In molecular biology,snoRNA snR53 is a non-coding RNA (ncRNA) molecule which functions in the modification of other small nuclear RNAs (snRNAs). This type of modifying RNA is usually located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA. snoRNA snR53 belongs to the C/D box class of snoRNAs which contain the conserved sequence motifs known as the C box (UGAUGA) and the D box (CUGA). Most of the members of the box C/D family function in directing site-specific 2'-O-methylation of substrate RNAs. snoRNA snR53 was initially discovered using a computational screen of the Saccharomyces cerevisiae genome.

U8 small nucleolar RNA

In molecular biology, U8 small nucleolar RNA is the RNA component of a small RNA:protein complex which is required for biogenesis of mature large subunit ribosomal RNAs, 5.8S and 28S rRNAs.

Fibrillarin

rRNA 2'-O-methyltransferase fibrillarin is an enzyme that in humans is encoded by the FBL gene.

Small nucleolar RNA snoR9 plant

In molecular biology, snoR9 is a non-coding RNA (ncRNA) which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). It is known as a small nucleolar RNA (snoRNA) and also often referred to as a 'guide RNA'.

Small nucleolar RNA SNORD75

In molecular biology, Small Nucleolar RNA SNORD75 is a non-coding RNA (ncRNA) molecule which functions in the biogenesis (modification) of other small nuclear RNAs (snRNAs). This type of modifying RNA is located in the nucleolus of the eukaryotic cell which is a major site of snRNA biogenesis. It is known as a small nucleolar RNA (snoRNA) and also often referred to as a guide RNA.

NOP58

Nucleolar protein 58 is a protein that in humans is encoded by the NOP58 gene.

Nucleolar protein, member A1

H/ACA ribonucleoprotein complex subunit 1 is a protein that in humans is encoded by the GAR1 gene.

RRP9

U3 small nucleolar RNA-interacting protein 2 is a protein that in humans is encoded by the RRP9 gene.

Small nucleolar RNA sR8 world of history

In molecular biology, Small nucleolar RNA sR8 is a non-coding RNA belonging to the C/D box class of snoRNAs. sR8, along with other C/D box snoRNAs, performs 2′-O-methylation of ribose on a target strand of ribosomal RNA. Targeting is achieved through the C and D box components, which are short sections of conserved sequences, as well as C'/D' boxes. These sequences base-pair with nucleotides in the target rRNA to direct their methylation.

References

  1. Cléry, A.; Senty-Ségault, V.; Leclerc, F.; Raué, A.; Branlant, C. (Feb 2007). "Analysis of sequence and structural features that identify the B/C motif of U3 small nucleolar RNA as the recognition site for the Snu13p-Rrp9p protein pair". Molecular and Cellular Biology. 27 (4): 1191–1206. doi:10.1128/MCB.01287-06. ISSN   0270-7306. PMC   1800722 . PMID   17145781.
  2. Zwieb, C (1997). "The uRNA database". Nucleic Acids Res. 25 (1): 102–103. doi:10.1093/nar/25.1.102. PMC   146409 . PMID   9016512.
  3. Speckmann, W; Narayanan A; Terns R; Terns MP (1999). "Nuclear retention elements of U3 small nucleolar RNA". Mol Cell Biol. 19 (12): 8412–8421. doi:10.1128/MCB.19.12.8412. PMC   84939 . PMID   10567566.
  4. Méreau A, Fournier R, Grégoire A, et al. (October 1997). "An in vivo and in vitro structure-function analysis of the Saccharomyces cerevisiae U3A snoRNP: protein-RNA contacts and base-pair interaction with the pre-ribosomal RNA". J. Mol. Biol. 273 (3): 552–71. doi:10.1006/jmbi.1997.1320. PMID   9356246.
  5. Granneman S, Vogelzangs J, Lührmann R, van Venrooij WJ, Pruijn GJ, Watkins NJ (October 2004). "Role of pre-rRNA base pairing and 80S complex formation in subnucleolar localization of the U3 snoRNP". Mol. Cell. Biol. 24 (19): 8600–10. doi:10.1128/MCB.24.19.8600-8610.2004. PMC   516741 . PMID   15367679.
  6. Srivastava A, Ahamad J, Ray AK, Kaur D, Bhattacharya A, Bhattacharya S (2014). Analysis of U3 snoRNA and small subunit processome components in the parasitic protist Entamoeba histolytica. Mol Biochem Parasitol. 193(2):82-92. doi: 10.1016/j.molbiopara.2014.03.001. Epub 2014 Mar 12
  7. Marz M, Stadler PF (2009). "Comparative analysis of eukaryotic U3 snoRNA". RNA Biol. 6 (5): 503–7. CiteSeerX   10.1.1.380.4189 . doi:10.4161/rna.6.5.9607. PMID   19875933. S2CID   13055120.