Soitec

Last updated

Soitec
Company typeSociété Anonyme – SA (French publicly-traded limited company)
ISIN FR0013227113  OOjs UI icon edit-ltr-progressive.svg
Founded1992;32 years ago (1992)
Founder André-Jacques Auberton-Hervé  [ fr ] & Jean-Michel Lamure
Headquarters
Key people
Pierre Barnabé  [ fr ] (CEO and chairman)
ProductsInnovative semiconductor materials dedicated to three key markets: mobile communications, automotive and smart objects
RevenueIncrease2.svg €1.09 billion (2022–2023)
Increase2.svg €233 million (2022–2023)
OwnerFree-float (61.03%)
BPI France (10.35%)
NSIG Sunrise SARL (10.35%)
Blackrock (8.91%)
CEA Investment (7.31%)
Employees (1.41%)
Shin-Etsu Handotai Co., Ltd. (0.63%)
Treasury Shares (0.01%)
Number of employees
2,044
Website soitec.com
Footnotes /references
"MarketWatch: Soitec S.A."

Soitec is an international company based in France, that manufactures substrates used in the creation of semiconductors.

Contents

Soitec's semiconductor materials are used to manufacture chips which are used in smartphones, tablets, computers, IT servers, and data centres. Soitec's products are also found in electronic components used in cars, connected objects (Internet of Things), as well as industrial and medical equipment.

Soitec's flagship product is silicon on insulator (SOI). Materials produced by Soitec come in the form of substrates (also called "wafers"). These are produced as ultra-thin disks that are 200 to 300 mm in diameter and are less than 1 mm thick. These wafers are then etched and cut to be used for microchips in electronics.[ citation needed ]

History

Soitec was founded in 1992 near Grenoble in France by two researchers from CEA Leti, an institute for micro- and nanotechnologies research created by the French Commission for Atomic Energy and Alternative Energies (CEA). The pair developed Smart Cut™ technology to industrialize Silicon-On-Insulator (SOI) wafers, and built their first production unit in Bernin, in the Isère department of France.

Soitec's offering initially targeted the electronics market. At the end of the 2000s, Soitec launched into the solar energy and lighting markets, exploiting new openings for its materials and technologies. In 2015, the company announced that it would be refocusing its efforts on its core business: electronics.

Soitec employs about 2000 people throughout the world and currently has production units in France and in Singapore. The company also has R&D centers and commercial offices in France, the United States (Arizona and California), China, South Korea, Japan and Taiwan.

Key dates

Operations

Historically, Soitec has marketed Silicon on Insulator (SOI) as a high performance material for manufacturing electronic chips for computers, game consoles and servers, as well as the automotive industry. With the explosion of mobile products (tablets, smartphones, etc.) on the consumer electronics market, Soitec has also developed new materials for radio-frequency components, multimedia processors, and power electronics.

With the rapid growth of the Internet of Things, wearables, and other mobile devices, new needs have arisen in terms of performance and energy efficiency of electronic components. For this market, Soitec offers materials that help reduce the energy consumed by chips, improve their information processing speed, and support the needs of high-speed Internet.

In the solar energy market Soitec acquired Concentrix Solar, then manufactured and supplied Concentrator Photovoltaic (CPV) systems from 2009 to 2015. [3] Research to create a new generation of four-junction solar cells led Soitec to set a world record in December 2014 with a cell capable of converting 46% of solar rays into electricity. Soitec announced in January 2015 that it would be leaving the solar market after several important solar plant projects ended. [4] [5]

In the lighting industry, Soitec operates upstream and downstream of the LED value chain.

Upstream, the company uses its expertise in semiconductor materials to develop substrates made from gallium nitride (GaN), the base material used in LEDs.

Downstream, Soitec is developing a range of industrial partnerships to commercialize new professional lighting solutions[ buzzword ] (urban, office and transport infrastructure lighting).

Technologies

Soitec is developing numerous technologies for its different sectors of activity.

Smart Cut™

Developed by CEA-Leti in collaboration with Soitec, [6] this technology has been patented by researcher Michel Bruel. [7] It makes possible the transfer of a thin layer of monocristalline material from a donor substrate to another by combining ion implantation and bonding by molecular adhesion. Soitec uses Smart Cut™ technology to mass-produce SOI wafers. Compared with classic bulk silicon, SOI enables a significant reduction in energy leakage in the substrate, and improves the performance of the circuit in which it is used.

Smart Stacking™

The technology involves the transfer of partially or fully processed wafers onto other wafers. It can be adapted to wafer diameters of 150 mm to 300 mm and is compatible with a wide variety of substrates, such as silicon, glass and sapphire.

Smart Stacking™ technology is used for back-side illuminated image sensors, where it improves sensitivity and enables a smaller pixel size, as well as in smartphone radio-frequency circuits. It also opens new doors to 3D integration.

Epitaxy

Soitec has epitaxy expertise in III-IV materials across the following fields: molecular beam epitaxy, metal organic vapor phase epitaxy and hydride vapor phase epitaxy. The company manufactures wafers of gallium arsenide (GaAs) and gallium nitride (GaN) for developing and manufacturing compound semiconductor systems.

These materials are used in Wi-Fi and high-frequency electronic devices (mobile telecommunications, infrastructure networks, satellite communications, fiber optic networks and radar detection), as well as in energy management and optoelectronic systems, such as LEDs.

Capital increases

Soitec has carried out three capital increases:

Related Research Articles

<span class="mw-page-title-main">Semiconductor device fabrication</span> Manufacturing process used to create integrated circuits

Semiconductor device fabrication is the process used to manufacture semiconductor devices, typically integrated circuits (ICs) such as computer processors, microcontrollers, and memory chips that are present in everyday electronic devices. It is a multiple-step photolithographic and physio-chemical process during which electronic circuits are gradually created on a wafer, typically made of pure single-crystal semiconducting material. Silicon is almost always used, but various compound semiconductors are used for specialized applications.

<span class="mw-page-title-main">Wafer (electronics)</span> Thin slice of semiconductor used for the fabrication of integrated circuits

In electronics, a wafer is a thin slice of semiconductor, such as a crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells.

<span class="mw-page-title-main">STMicroelectronics</span> Semiconductor device manufacturer

STMicroelectronics N.V. is a multinational corporation and technology company of French-Italian origin. It is headquartered in Plan-les-Ouates and listed on the New York Stock Exchange, on the Euronext Paris in Paris and on the Borsa Italiana in Milan. ST is the largest European semiconductor contract manufacturing and design company. The company resulted from the merger of two government-owned semiconductor companies in 1987: Thomson Semiconducteurs of France and SGS Microelettronica of Italy.

<span class="mw-page-title-main">Epitaxy</span> Crystal growth process relative to the substrate

Epitaxy refers to a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited crystalline film is called an epitaxial film or epitaxial layer. The relative orientation(s) of the epitaxial layer to the seed layer is defined in terms of the orientation of the crystal lattice of each material. For most epitaxial growths, the new layer is usually crystalline and each crystallographic domain of the overlayer must have a well-defined orientation relative to the substrate crystal structure. Epitaxy can involve single-crystal structures, although grain-to-grain epitaxy has been observed in granular films. For most technological applications, single-domain epitaxy, which is the growth of an overlayer crystal with one well-defined orientation with respect to the substrate crystal, is preferred. Epitaxy can also play an important role while growing superlattice structures.

Applied Materials, Inc. is an American corporation that supplies equipment, services and software for the manufacture of semiconductor chips for electronics, flat panel displays for computers, smartphones, televisions, and solar products. The company also supplies equipment to produce coatings for flexible electronics, packaging and other applications. The company is headquartered in Santa Clara, California, and is the largest supplier of semiconductor equipment in the world based on revenue.

In semiconductor manufacturing, silicon on insulator (SOI) technology is fabrication of silicon semiconductor devices in a layered silicon–insulator–silicon substrate, to reduce parasitic capacitance within the device, thereby improving performance. SOI-based devices differ from conventional silicon-built devices in that the silicon junction is above an electrical insulator, typically silicon dioxide or sapphire. The choice of insulator depends largely on intended application, with sapphire being used for high-performance radio frequency (RF) and radiation-sensitive applications, and silicon dioxide for diminished short-channel effects in other microelectronics devices. The insulating layer and topmost silicon layer also vary widely with application.

An epitaxial wafer is a wafer of semiconducting material made by epitaxial growth (epitaxy) for use in photonics, microelectronics, spintronics, or photovoltaics. The epi layer may be the same material as the substrate, typically monocrystaline silicon, or it may be a silicon dioxide (SoI) or a more exotic material with specific desirable qualities. The purpose of epitaxy is to perfect the crystal structure over the bare substrate below and improve the wafer surface's electrical characteristics, making it suitable for highly complex microprocessors and memory devices.

<span class="mw-page-title-main">Solar cell</span> Photodiode used to produce power from light on a large scale

A solar cell or photovoltaic cell is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect. It is a form of photoelectric cell, a device whose electrical characteristics vary when it is exposed to light. Individual solar cell devices are often the electrical building blocks of photovoltaic modules, known colloquially as "solar panels". The common single-junction silicon solar cell can produce a maximum open-circuit voltage of approximately 0.5 to 0.6 volts.

<span class="mw-page-title-main">Smart cut</span>

Smart cut is a technological process that enables the transfer of very fine layers of crystalline silicon material onto a mechanical support. It was invented by Michel Bruel of CEA-Leti, and was protected by US patent 5374564. The application of this technological procedure is mainly in the production of silicon-on-insulator (SOI) wafer substrates.

ASM is a Dutch headquartered multinational corporation that specializes in the design, manufacturing, sales and service of semiconductor wafer processing equipment for the fabrication of semiconductor devices. ASM's products are used by semiconductor manufacturers in front-end wafer processing in their semiconductor fabrication plants. ASM's technologies include atomic layer deposition, epitaxy, chemical vapor deposition and diffusion.

SunEdison, Inc. is a renewable energy company headquartered in the U.S. In addition to developing, building, owning, and operating solar power plants and wind energy plants, it also manufactures high purity polysilicon, monocrystalline silicon ingots, silicon wafers, solar modules, solar energy systems, and solar module racking systems. Originally a silicon-wafer manufacturer established in 1959 as the Monsanto Electronic Materials Company, the company was sold by Monsanto in 1989.

<span class="mw-page-title-main">Veeco</span> American manufacturing company

Veeco is a global capital equipment supplier, headquartered in the U.S., that designs and builds processing systems used in semiconductor and compound semiconductor manufacturing, data storage and scientific markets for applications such as advanced packaging, photonics, power electronics and display technologies.

GlobalFoundries Inc. (GF) is a multinational semiconductor contract manufacturing and design company incorporated in the Cayman Islands and headquartered in Malta, New York. Created by the divestiture of the manufacturing arm of AMD, the company was privately owned by Mubadala Investment Company, a sovereign wealth fund of the United Arab Emirates, until an initial public offering (IPO) in October 2021.

IQE PLC is a British semiconductor company founded 1988 in Cardiff, Wales, which manufactures advanced epitaxial wafers for a wide range of technology applications for wireless, optoelectronic, electronic and solar devices. IQE specialises in advanced silicon and compound semiconductor materials based on gallium arsenide (GaAs), indium phosphide (InP), gallium nitride (GaN) and silicon. The company is the largest independent outsource producer of epiwafers manufactured by metalorganic vapour phase epitaxy (MOCVD), molecular beam epitaxy (MBE) and chemical vapor deposition (CVD).

Dolphin Design is a semiconductor design company, founded in 2018 following its acquisition by Soitec. Formerly known as Dolphin Integration, it is based in Meylan in the Grenoble region.

<span class="mw-page-title-main">Solar cell research</span> Research in the field of photovoltaics

There are currently many research groups active in the field of photovoltaics in universities and research institutions around the world. This research can be categorized into three areas: making current technology solar cells cheaper and/or more efficient to effectively compete with other energy sources; developing new technologies based on new solar cell architectural designs; and developing new materials to serve as more efficient energy converters from light energy into electric current or light absorbers and charge carriers.

<span class="mw-page-title-main">CEA-Leti: Laboratoire d'électronique des technologies de l'information</span>

CEA-Leti is a research institute for electronics and information technologies, based in Grenoble, France. It is one of the world's largest organizations for applied research in microelectronics and nanotechnology. It is part of the French Alternative Energies and Atomic Energy Commission (CEA).

<span class="mw-page-title-main">Tower Semiconductor</span> Integrated circuit manufacturer

Tower Semiconductor Ltd. is an Israeli company that manufactures integrated circuits using specialty process technologies, including SiGe, BiCMOS, Silicon Photonics, SOI, mixed-signal and RFCMOS, CMOS image sensors, non-imaging sensors, power management (BCD), and non-volatile memory (NVM) as well as MEMS capabilities. Tower Semiconductor also owns 51% of TPSCo, an enterprise with Nuvoton Technology Corporation Japan (NTCJ).

The Fraunhofer Institute for Solar Energy Systems ISE is an institute of the Fraunhofer-Gesellschaft. Located in Freiburg, Germany, The Institute performs applied scientific and engineering research and development for all areas of solar energy. Fraunhofer ISE has three external branches in Germany which carry out work on solar cell and semiconductor material development: the Laboratory and Service Center (LSC) in Gelsenkirchen, the Technology Center of Semiconductor Materials (THM) in Freiberg, and the Fraunhofer Center for Silicon Photovoltaics (CSP) in Halle. From 2006 to 2016 Eicke Weber was the director of Fraunhofer ISE. With over 1,100 employees, Fraunhofer ISE is the largest institute for applied solar energy research in Europe. The 2012 Operational Budget including investments was 74.3 million euro.

Weebit Nano is a public semiconductor IP company founded in Israel in 2015 and headquartered in Hod Hasharon, Israel. The company develops Resistive Random-Access Memory technologies. Resistive Random-Access Memory is a specialized form of non-volatile memory (NVM) for the semiconductor industry. The company’s products are targeted at a broad range of NVM markets where persistence, performance, and endurance are all required. ReRAM technology can be integrated in electronic devices like wearables, Internet of Things (IoT) endpoints, smartphones, robotics, autonomous vehicles, and 5G cellular communications, among other products. Weebit Nano’s IP can be licensed to semiconductor companies and semiconductor fabs.

References

  1. "Soitec – Financial press releases". www.soitec.com. Retrieved 13 November 2015.
  2. "Soitec lance le chantier de sa nouvelle usine de semi-conducteurs à Grenoble". BFM BUSINESS (in French). Retrieved 6 October 2022.
  3. "Soitec expands into the fast growing solar energy market with the aquisition[sic] of Concentrix Solar". Archived from the original on 1 March 2010. Retrieved 12 December 2009.
  4. "Soitec To Give Up on Solar CPV". Renewable Energy World. 20 January 2015. Retrieved 4 February 2019.
  5. "CPV Hopeful Soitec Exits the Solar Business". Green Tech Media. 25 January 2015. Retrieved 4 February 2019.
  6. "Des ions et des hommes" (Ions and humans), Leti website, March 29, 2013
  7. Patent n°US5374564