Starobinsky inflation

Last updated

Starobinsky inflation is a modification of general relativity used to explain cosmological inflation.

Contents

History

In the Soviet Union, Alexei Starobinsky noted that quantum corrections to general relativity should be important for the early universe. These generically lead to curvature-squared corrections to the Einstein–Hilbert action and a form of f(R) modified gravity. The solution to Einstein's equations in the presence of curvature squared terms, when the curvatures are large, leads to an effective cosmological constant. Therefore, he proposed that the early universe went through an inflationary de Sitter era. [1] This resolved the cosmology problems and led to specific predictions for the corrections to the microwave background radiation, corrections that were then calculated in detail. Starobinsky originally used the semi-classical Einstein equations with free quantum matter fields. [2] However, it was soon realized that the late time inflation which is relevant for observable universe was essentially controlled by the contribution from a squared Ricci scalar in the effective action [3] [4]

where and is the Ricci scalar. This action corresponds to the potential [5] [6]

in the Einstein frame. As a result, the inflationary scenario associated to this potential or to an action including an term are referred to as Starobinsky inflation. To distinguish, models using the original, more complete, quantum effective action are then called (trace)-anomaly induced inflation. [7] [8]

Observables

Starobinsky inflation gives a prediction for the observables of the spectral tilt and the tensor-scalar ratio : [9] where is the number of e-foldings since the horizon crossing. As , these are compatible with experimental data, with 2018 CMB data from the Planck satellite giving a constraint of (95% confidence) and (68% confidence). [9]

See also

Related Research Articles

In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch is believed to have lasted from 10−36 seconds to between 10−33 and 10−32 seconds after the Big Bang. Following the inflationary period, the universe continued to expand, but at a slower rate. The re-acceleration of this slowing expansion due to dark energy began after the universe was already over 7.7 billion years old.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

<span class="mw-page-title-main">Scalar field</span> Assignment of numbers to points in space

In mathematics and physics, a scalar field is a function associating a single number to every point in a space – possibly physical space. The scalar may either be a pure mathematical number (dimensionless) or a scalar physical quantity.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

The Friedmann–Lemaître–Robertson–Walker metric is a metric based on an exact solution of the Einstein field equations of general relativity. The metric describes a homogeneous, isotropic, expanding universe that is path-connected, but not necessarily simply connected. The general form of the metric follows from the geometric properties of homogeneity and isotropy; Einstein's field equations are only needed to derive the scale factor of the universe as a function of time. Depending on geographical or historical preferences, the set of the four scientists – Alexander Friedmann, Georges Lemaître, Howard P. Robertson and Arthur Geoffrey Walker – are variously grouped as Friedmann, Friedmann–Robertson–Walker (FRW), Robertson–Walker (RW), or Friedmann–Lemaître (FL). This model is sometimes called the Standard Model of modern cosmology, although such a description is also associated with the further developed Lambda-CDM model. The FLRW model was developed independently by the named authors in the 1920s and 1930s.

In theoretical physics, the Einstein–Cartan theory, also known as the Einstein–Cartan–Sciama–Kibble theory, is a classical theory of gravitation, one of several alternatives to general relativity. The theory was first proposed by Élie Cartan in 1922.

<span class="mw-page-title-main">Hierarchy problem</span> Unsolved problem in physics

In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than gravity.

In physics, the Brans–Dicke theory of gravitation is a competitor to Einstein's general theory of relativity. It is an example of a scalar–tensor theory, a gravitational theory in which the gravitational interaction is mediated by a scalar field as well as the tensor field of general relativity. The gravitational constant is not presumed to be constant but instead is replaced by a scalar field which can vary from place to place and with time.

<span class="mw-page-title-main">Flatness problem</span> Cosmological fine-tuning problem

The flatness problem is a cosmological fine-tuning problem within the Big Bang model of the universe. Such problems arise from the observation that some of the initial conditions of the universe appear to be fine-tuned to very 'special' values, and that small deviations from these values would have extreme effects on the appearance of the universe at the current time.

Primordial fluctuations are density variations in the early universe which are considered the seeds of all structure in the universe. Currently, the most widely accepted explanation for their origin is in the context of cosmic inflation. According to the inflationary paradigm, the exponential growth of the scale factor during inflation caused quantum fluctuations of the inflaton field to be stretched to macroscopic scales, and, upon leaving the horizon, to "freeze in". At the later stages of radiation- and matter-domination, these fluctuations re-entered the horizon, and thus set the initial conditions for structure formation.

String cosmology is a relatively new field that tries to apply equations of string theory to solve the questions of early cosmology. A related area of study is brane cosmology.

In theoretical physics, massive gravity is a theory of gravity that modifies general relativity by endowing the graviton with a nonzero mass. In the classical theory, this means that gravitational waves obey a massive wave equation and hence travel at speeds below the speed of light.

The Weyl curvature hypothesis, which arises in the application of Albert Einstein's general theory of relativity to physical cosmology, was introduced by the British mathematician and theoretical physicist Roger Penrose in an article in 1979 in an attempt to provide explanations for two of the most fundamental issues in physics. On the one hand, one would like to account for a universe which on its largest observational scales appears remarkably spatially homogeneous and isotropic in its physical properties ; on the other hand, there is the deep question on the origin of the second law of thermodynamics.

In theoretical physics, a scalar–tensor theory is a field theory that includes both a scalar field and a tensor field to represent a certain interaction. For example, the Brans–Dicke theory of gravitation uses both a scalar field and a tensor field to mediate the gravitational interaction.

Alternatives to general relativity are physical theories that attempt to describe the phenomenon of gravitation in competition with Einstein's theory of general relativity. There have been many different attempts at constructing an ideal theory of gravity.

<span class="mw-page-title-main">Christopher T. Hill</span> American theoretical physicist

Christopher T. Hill is an American theoretical physicist at the Fermi National Accelerator Laboratory who did undergraduate work in physics at M.I.T., and graduate work at Caltech. Hill's Ph.D. thesis, "Higgs Scalars and the Nonleptonic Weak Interactions" (1977) contains one of the first detailed discussions of the two-Higgs-doublet model and its impact upon weak interactions. His work mainly focuses on new physics that can be probed in laboratory experiments or cosmology.

f(R) is a type of modified gravity theory which generalizes Einstein's general relativity. f(R) gravity is actually a family of theories, each one defined by a different function, f, of the Ricci scalar, R. The simplest case is just the function being equal to the scalar; this is general relativity. As a consequence of introducing an arbitrary function, there may be freedom to explain the accelerated expansion and structure formation of the Universe without adding unknown forms of dark energy or dark matter. Some functional forms may be inspired by corrections arising from a quantum theory of gravity. f(R) gravity was first proposed in 1970 by Hans Adolph Buchdahl. It has become an active field of research following work by Starobinsky on cosmic inflation. A wide range of phenomena can be produced from this theory by adopting different functions; however, many functional forms can now be ruled out on observational grounds, or because of pathological theoretical problems.

In general relativity, the Hamilton–Jacobi–Einstein equation (HJEE) or Einstein–Hamilton–Jacobi equation (EHJE) is an equation in the Hamiltonian formulation of geometrodynamics in superspace, cast in the "geometrodynamics era" around the 1960s, by Asher Peres in 1962 and others. It is an attempt to reformulate general relativity in such a way that it resembles quantum theory within a semiclassical approximation, much like the correspondence between quantum mechanics and classical mechanics.

Bimetric gravity or bigravity refers to two different classes of theories. The first class of theories relies on modified mathematical theories of gravity in which two metric tensors are used instead of one. The second metric may be introduced at high energies, with the implication that the speed of light could be energy-dependent, enabling models with a variable speed of light.

References

  1. Starobinsky, A. A. (December 1979). "Spectrum Of Relict Gravitational Radiation And The Early State Of The Universe". Journal of Experimental and Theoretical Physics Letters. 30: 682. Bibcode:1979JETPL..30..682S.; Starobinskii, A. A. (December 1979). "Spectrum of relict gravitational radiation and the early state of the universe". Pisma Zh. Eksp. Teor. Fiz. (Soviet Journal of Experimental and Theoretical Physics Letters). 30: 719. Bibcode:1979ZhPmR..30..719S.
  2. Starobinsky, A.A (1980). "A new type of isotropic cosmological models without singularity". Physics Letters B. 91 (1): 99–102. Bibcode:1980PhLB...91...99S. doi:10.1016/0370-2693(80)90670-X.
  3. Starobinsky, A.A. (1983). "The Perturbation Spectrum Evolving from a Nonsingular Initially De-Sitter Cosmology and the Microwave Background Anisotropy". Sov. Astron. Lett. 9 (9): 302.
  4. Vilenkin, Alexander (1985). "Classical and quantum cosmology of the Starobinsky inflationary model". Physical Review D. 32 (10): 2511–2521. Bibcode:1985PhRvD..32.2511V. doi:10.1103/PhysRevD.32.2511. PMID   9956022.
  5. Maeda, Ken-Ichi (1988). "Inflation as a Transient Attractor in R**2 Cosmology". Physical Review D. 37: 858–882. doi:10.1103/PhysRevD.37.858.
  6. Coule, David H.; Mijic, Milan B. (1988). "Quantum Fluctuations and Eternal Inflation in the R**2 Model". Int.J.Mod.Phys.A. 3: 617–629. doi:10.1142/S0217751X88000266.
  7. Hawking, Stephen; Hertog, Thomas; Reall, Harvey (2001). "Trace anomaly driven inflation". Physical Review D. 63 (8): 083504. arXiv: hep-th/0010232 . Bibcode:2001PhRvD..63h3504H. doi:10.1103/PhysRevD.63.083504. S2CID   8750172.
  8. de Paula Netto, Tibério; Pelinson, Ana; Shapiro, Ilya; Starobinsky, Alexei (2016). "From stable to unstable anomaly-induced inflation". The European Physical Journal C. 76 (10): 1–14. arXiv: 1509.08882 . Bibcode:2016EPJC...76..544N. doi: 10.1140/epjc/s10052-016-4390-4 .
  9. 1 2 Akrami, Y.; et al. (2020). "Planck2018 results". Astronomy & Astrophysics. 641: A10. arXiv: 1807.06211 . doi:10.1051/0004-6361/201833887. S2CID   119089882.