Sup35p

Last updated
Eukaryotic peptide chain release factor GTP-binding subunit
Identifiers
Organism Saccharomyces cerevisiae strain S288c
SymbolSus35
Entrez 851752
HomoloGene 68226
RefSeq (mRNA) NM_001180479.3
RefSeq (Prot) NP_010457.3
UniProt P05453
Other data
Chromosome IV: 0.81 - 0.81 Mb

Sup35p is the Saccharomyces cerevisiae (a yeast) eukaryotic translation release factor. More specifically, it is the yeast eukaryotic release factor 3 (eRF3), which forms the translation termination complex with eRF1 (Sup45p in yeast). This complex recognizes and catalyzes the release of the nascent polypeptide chain when the ribosome encounters a stop codon. While eRF1 recognizes stop codons, eRF3 facilitates the release of the polypeptide chain through GTP hydrolysis.

Contents

Partial loss of function results in nonsense suppression, in which stop codons are ignored and proteins are abnormally synthesized with carboxyl terminal extensions. Complete loss of function is fatal.

History

Sup35p was shown to propagate in a prion form in 1994 by Reed Wickner. For this reason it is an intensely studied protein. When yeast cells harbor Sup35p in the prion state the resulting phenotype is known as [PSI+]. In [PSI+] cells Sup35p exists in an amyloid state that can be propagated and passed to daughter cells. This results in less soluble and functional protein and thus in an increased rate of nonsense suppression (translational read-through of stop codons).

The overexpression of the gene has been shown to induce the [Psi+] conformation.

Evolutionary capacitance

Several journal articles have suggested that the ability to interconvert between [PSI+] and [psi-](prion-free) states provides an evolutionary advantage, but this remains an area of much debate.

Susan Lindquist has shown that isogenic populations of yeast can express different phenotypes based on whether they had the prion form of Sup35p or the non-prion form. She did an experiment where seven strains of yeast with different genetic backgrounds were grown under many different stressful conditions, with matched [PSI+] and [psi-] strains. [1] In some cases, the [PSI+] version grew faster, in others [psi-] grew faster. She proposed that [PSI+] may act as an evolutionary capacitor to facilitate adaptation by releasing cryptic genetic variation in natural populations at times of stress. This variation would lie beyond stop codons, which show a high rate of in-frame loss in yeast. [2] Mathematical models suggest that [PSI+] may have evolved for this function. [3]

Physical Characteristics

Sup 35 contains a carboxyl-terminal region (C-terminus), which is responsible for the translation-termination activity. The amino-terminal(N-terminus) region of the protein is responsible for alternately folding depending on the conformation. The middle (m) domain has an unknown function. In an effort to determine the function of these N and M regions, in Susan Lindquists' experiment two of the strains were engineered to produce a version of Sup35p which does not include the N and M regions. [4]

The Sup35p protein is 685 amino acids long. [5] The C-terminal contains 5 complete and one incomplete repeat of the Oligopeptide repeat sequence PQGGYQQ-YN. In modified versions of the gene, it has been shown that the more repeats of this sequence present, the more the protein is to assume the [Psi+] confirmation. In fact, the addition of two extra repeats (R2) result in the [Psi-] to [Psi+] conversion in being 5000 times faster. [4] PMN2, a mutant, dominant version of the gene Sup35p, has a glycine to aspartic acid substitution in the second repeat. The resulting phenotype is a lack of ability to maintain the [Psi+] conformation.

The N-terminus has a high glutamine/asparagine amount at 43%, while the average yeast protein only contains 9%. The N terminus is 114 amino acids long and is termed the prion forming domain (PrD). Over expression of the Sup35p gene can lead to [Psi+].

Both the N and M terminals and the C terminus form binding sites to Sup45p, giving a total of two. Also, in binding to Sup45p the [psi+] protein can cause it to aggregate and form a prion. [6]

Adenine Pathway

The phenotypic differences between [psi-] and [psi+] is made clear when the ability of the cell to make adenine is tampered with. The buildup of P-ribosylamino imidazole (AIR) (a precursor in the adenine pathway in yeast) induces a red pigment in a yeast colony visible to the naked eye. In isogenic strains where the non-sense mutation is in the middle of either the gene ADE 2 or ADE 1 (enzymes involved in the pathway), the [psi-] strain has either build ups of P-ribosylamino imidazole (AIR), or P-ribosylamino imidazolecarboxylate (CAIR), respectively. Because CAIR converts back into AIR if the enzyme that catalyzes it to the next precursor is absent, either mutation will cause a red color in the [psi-] strain. The [psi+] strain appears white even when subjected to the same non-sense mutations. Thus, it is inferred that the eRF3 of the [psi+] is non-functional. [7]

This phenomenon is because the eRF3 in [psi-] is able to disconnect the ribosome effectively, so the enzyme cannot be properly synthesized. However, in the [psi+] strain, the enzyme is able to be synthesized enough so that the pathway still successfully produces adenine.

See also

Related Research Articles

<span class="mw-page-title-main">Protein</span> Biomolecule consisting of chains of amino acid residues

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.

<span class="mw-page-title-main">Protein biosynthesis</span> Assembly of proteins inside biological cells

Protein biosynthesis is a core biological process, occurring inside cells, balancing the loss of cellular proteins through the production of new proteins. Proteins perform a number of critical functions as enzymes, structural proteins or hormones. Protein synthesis is a very similar process for both prokaryotes and eukaryotes but there are some distinct differences.

<span class="mw-page-title-main">Epigenetics</span> Study of DNA modifications that do not change its sequence

In biology, epigenetics is the study of stable phenotypic changes that do not involve alterations in the DNA sequence. The Greek prefix epi- in epigenetics implies features that are "on top of" or "in addition to" the traditional genetic basis for inheritance. Epigenetics most often involves changes that affect gene activity and expression, but the term can also be used to describe any heritable phenotypic change. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors, or be part of normal development.

<span class="mw-page-title-main">Central dogma of molecular biology</span> Explanation of the flow of genetic information within a biological system

The central dogma of molecular biology is an explanation of the flow of genetic information within a biological system. It is often stated as "DNA makes RNA, and RNA makes protein", although this is not its original meaning. It was first stated by Francis Crick in 1957, then published in 1958:

The Central Dogma. This states that once "information" has passed into protein it cannot get out again. In more detail, the transfer of information from nucleic acid to nucleic acid, or from nucleic acid to protein may be possible, but transfer from protein to protein, or from protein to nucleic acid is impossible. Information means here the precise determination of sequence, either of bases in the nucleic acid or of amino acid residues in the protein.

<span class="mw-page-title-main">Susan Lindquist</span> American geneticist

Susan Lee Lindquist, ForMemRS was an American professor of biology at MIT specializing in molecular biology, particularly the protein folding problem within a family of molecules known as heat-shock proteins, and prions. Lindquist was a member and former director of the Whitehead Institute and was awarded the National Medal of Science in 2010.

<span class="mw-page-title-main">Frameshift mutation</span> Mutation that shifts codon alignment

A frameshift mutation is a genetic mutation caused by indels of a number of nucleotides in a DNA sequence that is not divisible by three. Due to the triplet nature of gene expression by codons, the insertion or deletion can change the reading frame, resulting in a completely different translation from the original. The earlier in the sequence the deletion or insertion occurs, the more altered the protein. A frameshift mutation is not the same as a single-nucleotide polymorphism in which a nucleotide is replaced, rather than inserted or deleted. A frameshift mutation will in general cause the reading of the codons after the mutation to code for different amino acids. The frameshift mutation will also alter the first stop codon encountered in the sequence. The polypeptide being created could be abnormally short or abnormally long, and will most likely not be functional.

<span class="mw-page-title-main">Structural inheritance</span>

Structural inheritance or cortical inheritance is the transmission of an epigenetic trait in a living organism by a self-perpetuating spatial structures. This is in contrast to the transmission of digital information such as is found in DNA sequences, which accounts for the vast majority of known genetic variation.

Evolvability is defined as the capacity of a system for adaptive evolution. Evolvability is the ability of a population of organisms to not merely generate genetic diversity, but to generate adaptive genetic diversity, and thereby evolve through natural selection.

<span class="mw-page-title-main">Silent mutation</span>

Silent mutations are mutations in DNA that do not have an observable effect on the organism's phenotype. They are a specific type of neutral mutation. The phrase silent mutation is often used interchangeably with the phrase synonymous mutation; however, synonymous mutations are not always silent, nor vice versa. Synonymous mutations can affect transcription, splicing, mRNA transport, and translation, any of which could alter phenotype, rendering the synonymous mutation non-silent. The substrate specificity of the tRNA to the rare codon can affect the timing of translation, and in turn the co-translational folding of the protein. This is reflected in the codon usage bias that is observed in many species. Mutations that cause the altered codon to produce an amino acid with similar functionality are often classified as silent; if the properties of the amino acid are conserved, this mutation does not usually significantly affect protein function.

This is a list of topics in molecular biology. See also index of biochemistry articles.

<span class="mw-page-title-main">Evolutionary capacitance</span> Evolutionary biology hypothesis

Evolutionary capacitance is the storage and release of variation, just as electric capacitors store and release charge. Living systems are robust to mutations. This means that living systems accumulate genetic variation without the variation having a phenotypic effect. But when the system is disturbed, robustness breaks down, and the variation has phenotypic effects and is subject to the full force of natural selection. An evolutionary capacitor is a molecular switch mechanism that can "toggle" genetic variation between hidden and revealed states. If some subset of newly revealed variation is adaptive, it becomes fixed by genetic assimilation. After that, the rest of variation, most of which is presumably deleterious, can be switched off, leaving the population with a newly evolved advantageous trait, but no long-term handicap. For evolutionary capacitance to increase evolvability in this way, the switching rate should not be faster than the timescale of genetic assimilation.

Bacterial translation is the process by which messenger RNA is translated into proteins in bacteria.

<span class="mw-page-title-main">PRNP</span> Protein involved in multiple prion diseases

PRNP is the human gene encoding for the major prion protein PrP, also known as CD230. Expression of the protein is most predominant in the nervous system but occurs in many other tissues throughout the body.

<span class="mw-page-title-main">Fungal prion</span> Prion that infects fungal hosts

A fungal prion is a prion that infects fungal hosts. Fungal prions are naturally occurring proteins that can switch between multiple, structurally distinct conformations, at least one of which is self-propagating and transmissible to other prions. This transmission of protein state represents an epigenetic phenomenon where information is encoded in the protein structure itself, instead of in nucleic acids. Several prion-forming proteins have been identified in fungi, primarily in the yeast Saccharomyces cerevisiae. These fungal prions are generally considered benign, and in some cases even confer a selectable advantage to the organism.

<i>N</i>-Formylmethionine Chemical compound

N-Formylmethionine is a derivative of the amino acid methionine in which a formyl group has been added to the amino group. It is specifically used for initiation of protein synthesis from bacterial and organellar genes, and may be removed post-translationally.

<span class="mw-page-title-main">EF-Tu</span> Prokaryotic elongation factor

EF-Tu is a prokaryotic elongation factor responsible for catalyzing the binding of an aminoacyl-tRNA (aa-tRNA) to the ribosome. It is a G-protein, and facilitates the selection and binding of an aa-tRNA to the A-site of the ribosome. As a reflection of its crucial role in translation, EF-Tu is one of the most abundant and highly conserved proteins in prokaryotes. It is found in eukaryotic mitochrondria as TUFM.

<span class="mw-page-title-main">Eukaryotic translation termination factor 1</span>

Eukaryotic translation termination factor 1 (eRF1), also known as TB3-1, is a protein that in humans is encoded by the ETF1 gene.

Sup45p is the Saccharomyces cerevisiae eukaryotic translation termination factor. More specifically, it is the yeast eukaryotic release factor 1 (eRF1). Its job is to recognize stop codons in RNA and bind to them. It binds to the Sup35p protein and then takes on the shape of a tRNA molecule so that it can safety incorporate itself into the A site of the Ribosome to disruptits flow and "release" the protein and end translation.

NatA acetyltransferase(Nα acetyltransferase), is an enzyme that serves to catalyze the addition of acetyl groups to various proteins emerging from the ribosome. Upon translation, the NatA binds to the ribosome and then "stretches" to the front end of the forming, or nascent, polypeptide, where it adds this acetyl group. This acetyl group is added to the front end, or N-terminus of the new protein.

<span class="mw-page-title-main">SDD-AGE</span> Method for detecting large protein polymers

In biochemistry and molecular biology, SDD-AGE is short for Semi-Denaturating Detergent Agarose Gel Electrophoresis. This is a method for detecting and characterizing large protein polymers which are stable in 2% SDS at room temperature, unlike most large protein complexes. This method is very useful for studying prions and amyloids, which are characterized by the formation of proteinaceous polymers. Agarose is used for the gel since the SDS-resistant polymers are large and cannot enter a conventional polyacrylamide gel, which has small pores. Agarose on the other hand has large pores, which allows for the separation of polymers.

References

  1. True HL, Lindquist SL (September 2000). "A yeast prion provides a mechanism for genetic variation and phenotypic diversity". Nature. 407 (6803): 477–83. Bibcode:2000Natur.407..477T. doi:10.1038/35035005. PMID   11028992. S2CID   4411231.
  2. Giacomelli M, Hancock AS, Masel J (2007). "The conversion of 3′ UTRs into coding regions". Molecular Biology and Evolution. 24 (2): 457–464. doi:10.1093/molbev/msl172. PMC   1808353 . PMID   17099057.
  3. Masel J, Bergman A (2003). "The evolution of the evolvability properties of the yeast prion [PSI+]". Evolution. 57 (7): 1498–1512. doi:10.1111/j.0014-3820.2003.tb00358.x. PMID   12940355. S2CID   30954684.
  4. 1 2 Parham SN, Resende CG, Tuite MF (May 2001). "Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions". The EMBO Journal. 20 (9): 2111–9. doi:10.1093/emboj/20.9.2111. PMC   125439 . PMID   11331577.
  5. "Sup35p [Saccharomyces cerevisiae]". National Center for Biotechnology Information, U.S. National Library of Medicine.
  6. Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (May 1997). "Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation". Molecular and Cellular Biology. 17 (5): 2798–805. doi:10.1128/mcb.17.5.2798. PMC   232131 . PMID   9111351.
  7. Montelone BA (24 December 2009). "Frequently Asked Questions--Yeast Strains". Physics Department at Kansas State University.