Terminal investment hypothesis

Last updated

The terminal investment hypothesis is the idea in life history theory that as an organism's residual reproductive value (or the total reproductive value minus the reproductive value of the current breeding attempt) decreases, its reproductive effort will increase. Thus, as an organism's prospects for survival decreases (through age or an immune challenge, for example), it will invest more in reproduction. This hypothesis is generally supported in animals, although results contrary to it do exist.

Contents

Definition

The terminal investment hypothesis posits that as residual reproductive value (measured as the total reproductive value minus the reproductive value of the current breeding attempt [1] ) decreases, reproductive effort increases. [2] This is based on the cost of reproduction hypothesis, which says that an increase in resources dedicated to current reproduction decreases the potential for future reproduction. But, as the residual reproductive value decreases, the importance of this trade-off decreases, leading to increased investment in the current reproductive attempt. [3] This terminal investment hypothesis can be illustrated by the equation

,

where is the total reproductive value, the reproductive value of the current breeding attempt, the proportionate increase in resulting from a positive decision (where a yes-no decision must be made regarding whether or not to increase reproductive effort), the cost of a positive decision where there is no selective pressure for either a positive decision or negative decision (this variable is also known as the "barely-justified cost"). The variable is the proportionate loss in from a negative decision. The barely-justified cost is thus inversely proportional to the residual reproductive value. When the level of reproductive investment has not reached the point where the equation above is true, more positive decisions about reproductive effort will be made. Thus, as the residual reproductive value decreases, more positive decisions need to be made so the equation is equal. [1]

In animals

In animals, most tests of the terminal investment hypothesis are correlations of age and reproductive effort, immune challenges on all age stages, and immune challenges on older ages versus younger ages. The last type of test is considered to be a more reliable measure of senescence's effect on reproductive effort, as younger individuals should reduce reproductive effort to reduce their chance of death because of their high future reproductive prospects, while older animals should increase effort because of their low future prospects. [2] Overall, the terminal investment hypothesis is generally supported in a variety of animals. [4]

In birds

A study on blue tits published in 2000 found that individuals injected with a human diphtheriatetanus vaccine fed their nestlings less than those injected with a control solution. [5] In a study published in 2004, house sparrows that were injected with a Newcastle disease vaccine were more likely to lay a replacement clutch after their first clutch had been artificially removed than those that were injected with a control solution. [6] In a study published in 2006, old blue-footed boobies injected with lipopolysaccharides (to challenge the immune system) before laying fledged more young than normal, whereas young individuals fledged less than normal. [2] An increase in maternal effort in immune challenged birds may be mediated by the hormone corticosterone; a study published in 2015 found that house wrens injected with lipopolysaccharides increased foraging, and that measurements of corticosterone from eggs laid after injection found a positive correlation of this hormone with maternal foraging rates. [7]

In insects

A study published in 2009 supported the cost of reproduction and terminal investment hypotheses in the burying beetle. It found that beetles manipulated to overproduce young (by replacing a 30 grams (1.1 oz) mouse carcass with a 20 grams (0.71 oz) carcass) had shorter lifespans than those that bred on just 30 grams (1.1 oz) carcasses, followed by those that had a 20 grams (0.71 oz) carcass. In turn, non-breeding beetles had a significantly longer lifespan than those that bred. This supports the cost of reproduction hypothesis. Another experiment from the same study found beetles that first bred at 65 days had a larger brood size before dispersal (before the larvae start to pupate in the soil) than those that initially bred at 28 days. This supports the terminal investment hypothesis, and prevents the effect of an increased average brood size in older animals due to differential survival of quality individuals. [3]

In flatworms

A study published in 2004 on the flatworm Diplostomum spathaceum found that as its intermediate host, a snail, aged, production of cercariae (which are passed on to the final host, a fish) decreased. This is in line with the bet hedging hypothesis, which, in this case, says that the flatworm should attempt to keep its host alive longer so that more young can be produced; it does not support the terminal investment hypothesis. [8]

In mammals

A study published in 2002 found results contrary to the terminal investment hypothesis in reindeer. Calf weight peaked at the mother's seventh year of age, and declined thereafter. However, this would only be opposed to the hypothesis if reproductive costs did not increase with age. An alternative hypothesis, the senescence hypothesis, positing that reproductive output declines with age-related loss of function, was supported by the study. [9] These two hypotheses are not necessarily mutually exclusive; a study on rhesus macaques published in 2010 strongly supported the senescence hypothesis and weakly supported the terminal investment hypothesis. It found that older mothers were lighter, less active, and had lighter infants with reduced survival rates compared to younger mothers (supporting the senescence hypothesis), but that older individuals spent more time in contact with their young (supporting the terminal investment hypothesis). [10] Additionally, a study published in 1982 on red deer on the island of Rhum found that while older mothers produced less offspring (and lighter offspring, when they did) than expected for a given body weight, they had longer suckling bouts (which had previously been correlated with milk yield, calf body condition in early winter, and calf survival to spring) compared to younger mothers. [11]

In reptiles

A study on spotted turtles published in 2008 found that individuals in very poor condition sometimes did not breed. This is consistent with the bet hedging hypothesis, and indicates decision making on a large temporal scale (as spotted turtles may live for 65 to 110 years. However, individuals in poor condition generally produced a relatively large amount of small eggs; consistent with the terminal investment hypothesis. [12]

In plants

Although the terminal investment hypothesis has been relatively widely studied in animals, there have been few studies of the hypothesis' application to plants. One study on members of the long-lived oak genus Quercus found that trees declined in condition towards the end of their lifespan, and did not invest an increasing proportion of their decreasing resources in reproduction. [4]

Related Research Articles

Senescence Deterioration of function with age

Senescence or biologicalaging is the gradual deterioration of functional characteristics. The word senescence can refer either to cellular senescence or to senescence of the whole organism. Organismal senescence involves an increase in death rates and/or a decrease in fecundity with increasing age, at least in the latter part of an organism's life cycle.

Tree swallow Species of bird in the Americas

The tree swallow is a migratory bird of the family Hirundinidae. Found in the Americas, the tree swallow was first described in 1807 by French ornithologist Louis Vieillot as Hirundo bicolor. It has since been moved to its current genus, Tachycineta, within which its phylogenetic placement is debated. The tree swallow has glossy blue-green upperparts, with the exception of the blackish wings and tail, and white underparts. The bill is black, the eyes dark brown, and the legs and feet pale brown. The female is generally duller than the male, and the first-year female has mostly brown upperparts, with some blue feathers. Juveniles have brown upperparts, and a grey-brown-washed breast. The tree swallow breeds in the US and Canada. It winters along southern US coasts south, along the Gulf Coast, to Panama and the northwestern coast of South America, and in the West Indies.

In epidemiology, the basic reproduction number, or basic reproductive number, denoted , of an infection is the expected number of cases directly generated by one case in a population where all individuals are susceptible to infection. The definition assumes that no other individuals are infected or immunized. Some definitions, such as that of the Australian Department of Health, add the absence of "any deliberate intervention in disease transmission". The basic reproduction number is not the same as the effective reproduction number , which is the number of cases generated in the current state of a population, which does not have to be the uninfected state. is a dimensionless number and not a rate, which would have units of time−1, or units of time like doubling time.

Reproductive success The passing of genes on to the next generation in a way that they too can pass on those genes

Reproductive success is an individual's production of offspring per breeding event or lifetime. This is not limited by the number of offspring produced by one individual, but also the reproductive success of these offspring themselves. Reproductive success is different from fitness in that individual success is not necessarily a determinant for adaptive strength of a genotype since the effects of chance and the environment have no influence on those specific genes. Reproductive success turns into a part of fitness when the offspring are actually recruited into the breeding population. If offspring quantity is not correlated with quality this holds up, but if not then reproductive success must be adjusted by traits that predict juvenile survival in order to be measured effectively. Quality and quantity is about finding the right balance between reproduction and maintenance and the disposable soma theory of aging tells us that a longer lifespan will come at the cost of reproduction and thus longevity is not always correlated with high fecundity. Parental investment is a key factor in reproductive success since taking better care to offspring is what often will give them a fitness advantage later in life. This includes mate choice and sexual selection as an important factor in reproductive success, which is another reason why reproductive success is different from fitness as individual choices and outcomes are more important than genetic differences. As reproductive success is measured over generations, Longitudinal studies are the preferred study type as they follow a population or an individual over a longer period of time in order to monitor the progression of the individual(s). These long term studies are preferable since they negate the effects of the variation in a single year or breeding season.

Grandmother hypothesis

The grandmother hypothesis is a hypothesis to explain the existence of menopause in human life history by identifying the adaptive value of extended kin networking. It builds on the previously postulated "mother hypothesis" which states that as mothers age, the costs of reproducing become greater, and energy devoted to those activities would be better spent helping her offspring in their reproductive efforts. It suggests that by redirecting their energy onto those of their offspring, grandmothers can better ensure the survival of their genes through younger generations. By providing sustenance and support to their kin, grandmothers not only ensure that their genetic interests are met, but they also enhance their social networks which could translate into better immediate resource acquisition. This effect could extend past kin into larger community networks and benefit wider group fitness.

Parental investment

Parental investment, in evolutionary biology and evolutionary psychology, is any parental expenditure that benefits offspring. Parental investment may be performed by both males and females, females alone or males alone. Care can be provided at any stage of the offspring's life, from pre-natal to post-natal.

Life history theory is an analytical framework designed to study the diversity of life history strategies used by different organisms throughout the world, as well as the causes and results of the variation in their life cycles. It is a theory of biological evolution that seeks to explain aspects of organisms' anatomy and behavior by reference to the way that their life histories—including their reproductive development and behaviors, post-reproductive behaviors, and lifespan —have been shaped by natural selection. A life history strategy is the "age- and stage-specific patterns" and timing of events that make up an organism's life, such as birth, weaning, maturation, death, etc. These events, notably juvenile development, age of sexual maturity, first reproduction, number of offspring and level of parental investment, senescence and death, depend on the physical and ecological environment of the organism.

Siblicide

Siblicide is the killing of an infant individual by its close relatives. It may occur directly between siblings or be mediated by the parents. The evolutionary drivers may be either indirect benefits for the genetic viability of a population or direct benefits for the perpetrators. Siblicide has mainly, but not only, been observed in birds.

In evolutionary biology and evolutionary psychology, the Trivers–Willard hypothesis, formally proposed by Robert Trivers and Dan Willard in 1973, suggests that female mammals are able to adjust offspring sex ratio in response to their maternal condition. For example, it may predict greater parental investment in males by parents in "good conditions" and greater investment in females by parents in "poor conditions". The reasoning for this prediction is as follows: Assume that parents have information on the sex of their offspring and can influence their survival differentially. While pressures exist to maintain sex ratios at 50%, evolution will favor local deviations from this if one sex has a likely greater reproductive payoff than is usual.

Enquiry into the evolution of ageing aims to explain why a detrimental process such as aging would evolve, and why there is so much variability in the lifespans of living organisms. The classical theories of evolution suggest that environmental factors such as predation, accidents, disease, starvation, etc. ensure that most organisms living in natural settings will not live until old age, and so there will be very little pressure to conserve genetic changes that increase longevity. Natural selection will instead strongly favor genes which ensure early maturation and rapid reproduction, and the selection for genetic traits which promote molecular and cellular self-maintenance will decline with age for most organisms.

Semelparity and iteroparity are two contrasting reproductive strategies available to living organisms. A species is considered semelparous if it is characterized by a single reproductive episode before death, and iteroparous if it is characterized by multiple reproductive cycles over the course of its lifetime. Some botanists use the parallel terms monocarpy and polycarpy.

The challenge hypothesis outlines the dynamic relationship between testosterone and aggression in mating contexts. It proposes that testosterone promotes aggression when it would be beneficial for reproduction, such as mate guarding, or strategies designed to prevent the encroachment of intrasexual rivals. The positive correlation between reproductive aggression and testosterone levels is seen to be strongest during times of social instability. The challenge hypothesis predicts that seasonal patterns in testosterone levels are a function of mating system, paternal care, and male-male aggression in seasonal breeders.

The disposable soma theory of aging states that organisms age due to an evolutionary trade-off between growth, reproduction, and DNA repair maintenance. Formulated by Thomas Kirkwood, the disposable soma theory explains that an organism only has a limited amount of resources or "soma" that it can allocate to its various cellular processes. Therefore, a greater investment in growth and reproduction would result in reduced investment in DNA repair maintenance, leading to increased cellular damage, shortened telomeres, accumulation of mutations, compromised stem cells, and ultimately, senescence. Although many models, both animal and human, have appeared to support this theory, parts of it are still controversial. Specifically, while the evolutionary trade-off between growth and aging has been well established, the relationship between reproduction and aging is still without scientific consensus, and the cellular mechanisms largely undiscovered.

Capital and income breeding

Capital breeding and income breeding refer to the methods by which some organisms time breeding and use resources to finance breeding. In the models, capital breeders breed when they reach a threshold condition, which decreases throughout the breeding season. However, the original definition of a capital breeder has changed, with the more recent definition being organisms that use energy stores built up before reproduction to breed. This is in comparison to income breeders, who breed after certain levels, which do not change, of increase in condition are reached and who use energy gained during breeding to finance reproduction. Income breeders who are growing especially fast hold off the development of their offspring after a threshold is reached so they can produce more offspring, although this does not occur in slower growing income breeders. An organism can be both a capital and an income breeder; the parasitoid Eupelmus vuilletti, for example, is an income breeder in terms of sugars, but a capital breeder in terms of lipids. A different example of the interaction between capital and income breeding is found in Vipera aspis; although these snakes are capital breeders, they lay larger litters when food is abundant, which is a characteristic of income breeders.

Human reproductive ecology is a subfield in evolutionary biology that is concerned with human reproductive processes and responses to ecological variables. It is based in the natural and social sciences, and is based on theory and models deriving from human and animal biology, evolutionary theory, and ecology. It is associated with fields such as evolutionary anthropology and seeks to explain human reproductive variation and adaptations. The theoretical orientation of reproductive ecology applies the theory of natural selection to reproductive behaviors, and has also been referred to as the evolutionary ecology of human reproduction.

The expensive tissue hypothesis (ETH) relates brain and gut size in evolution. It suggests that in order for an organism to evolve a large brain without a significant increase in basal metabolic rate, the organism must use less energy on other expensive tissues; the paper introducing the ETH suggests that in humans, this was achieved by eating an easy-to-digest diet and evolving a smaller, less energy intensive gut. The ETH has inspired many research projects to test its validity in primates and other organisms.

Extrinsic mortality is the sum of the effects of external factors, such as sunlight and pollutants that contribute to senescence and eventually death. This is opposed to intrinsic mortality, which is the sum of the effects of internal factors, such as mutation due to DNA replication errors. Extrinsic mortality plays a significant role in evolutionary theories of aging, as well as the discussion of health barriers across socioeconomic borders.

The temperature-size rule denotes the plastic response of organismal body size to environmental temperature variation. Organisms exhibiting a plastic response are capable of allowing their body size to fluctuate with environmental temperature. First coined by David Atkinson in 1996, it is considered to be a unique case of Bergmann's rule that has been observed in plants, animals, birds, and a wide variety of ectotherms. Although exceptions to the temperature-size rule exist, recognition of this widespread "rule" has amassed efforts to understand the physiological mechanisms underlying growth and body size variation in differing environmental temperatures.

In life history theory, the cost of reproduction hypothesis is the idea that reproduction is costly in terms of future survival and reproduction. This is mediated by various mechanisms, with the two most prominent being hormonal regulation and differential allocation of internal resources.

Mutation accumulation theory

The mutation accumulation theory of ageing was first proposed by Peter Medawar in 1952 as an evolutionary explanation for biological ageing and the associated decline in fitness that accompanies it. Medawar used the term 'senescence' to refer to this process. The theory explains that, in the case where harmful mutations are only expressed later in life, when reproduction has ceased and future survival is increasingly unlikely, then these mutations are likely to be unknowingly passed on to future generations. In this situation the force of natural selection will be weak, and so insufficient to consistently eliminate these mutations. Medawar posited that over time these mutations would accumulate due to genetic drift and lead to the evolution of what is now referred to as ageing.

References

  1. 1 2 Williams, George C. (1966). "Natural selection, the costs of reproduction, and a refinement of Lack's principle". The American Naturalist. 100 (916): 687–690. doi:10.1086/282461. ISSN   0003-0147.
  2. 1 2 3 Velando, A.; Drummond, H.; Torres, R. (2006). "Senescent birds redouble reproductive effort when ill: confirmation of the terminal investment hypothesis". Proceedings of the Royal Society B: Biological Sciences. 273 (1593): 1443–1448. doi:10.1098/rspb.2006.3480. ISSN   0962-8452. PMC   1560321 . PMID   16777735.
  3. 1 2 Creighton, J. Curtis; Heflin, Nicholas D.; Belk, Mark C. (2009). "Cost of reproduction, resource quality, and terminal investment in a burying beetle". The American Naturalist. 174 (5): 673–684. doi:10.1086/605963. ISSN   0003-0147. PMID   19775240.
  4. 1 2 Koenig, Walter D.; Knops, Johannes M. H.; Carmen, William J.; Pesendorfer, Mario B. (2017). "Testing the terminal investment hypothesis in California oaks". The American Naturalist. 189 (5): 564–569. doi:10.1086/691161. ISSN   0003-0147. PMID   28410024.
  5. Raberg, L.; Nilsson, J.-A.; Ilmonen, P.; Stjernman, M.; Hasselquist, D. (2000). "The cost of an immune response: vaccination reduces parental effort". Ecology Letters. 3 (5): 382–386. doi:10.1046/j.1461-0248.2000.00154.x. ISSN   1461-023X.
  6. Bonneaud, Camille; Mazuc, Jeremy; Chastel, Olivier; Westerdahl, Helena; Sorci, Gabriele (2004). "Terminal investment induced by immune challenge and fitness traits associated with major histocompatibility complex in the house sparrow". Evolution. 58 (12): 2823–2830. doi: 10.1111/j.0014-3820.2004.tb01633.x . ISSN   0014-3820. PMID   15696759.
  7. Bowers, E. Keith; Bowden, Rachel M.; Sakaluk, Scott K.; Thompson, Charles F. (2015). "Immune activation generates corticosterone-mediated terminal reproductive investment in a wild bird". The American Naturalist. 185 (6): 769–783. doi:10.1086/681017. ISSN   0003-0147. PMC   4443487 . PMID   25996862.
  8. Karvonen, A.; Kirsi, S.; Hudson, P. J.; Valtonen, E. T. (2004). "Patterns of cercarial production from Diplostomum spathaceum: terminal investment or bet hedging?". Parasitology. 129 (1): 87–92. doi:10.1017/S0031182004005281. ISSN   0031-1820. PMID   15267115.
  9. Weladji, Robert B.; Mysterud, Atle; Holand, Øystein; Lenvik, Dag (2002). "Age-related reproductive effort in reindeer (Rangifer tarandus): evidence of senescence". Oecologia. 131 (1): 79–82. Bibcode:2002Oecol.131...79W. doi:10.1007/s00442-001-0864-6. ISSN   0029-8549. PMID   28547513. S2CID   39221274.
  10. Hoffman, Christy L.; Higham, James P.; Mas-Rivera, Adaris; Ayala, James E.; Maestripieri, Dario (2010). "Terminal investment and senescence in rhesus macaques (Macaca mulatta) on Cayo Santiago". Behavioral Ecology. 21 (5): 972–978. doi:10.1093/beheco/arq098. ISSN   1465-7279. PMC   2920293 . PMID   22475990.
  11. Clutton-Brock, T. H. (1984). "Reproductive effort and terminal investment in iteroparous animals". The American Naturalist. 123 (2): 212–229. doi:10.1086/284198. ISSN   0003-0147.
  12. Litzgus, Jacqueline D.; Bolton, Frances; Schulte-Hostedde, Albrecht I. (2008). "Reproductive output depends on body condition in spotted turtles (Clemmys guttata)". Copeia. 2008 (1): 86–92. doi:10.1643/CH-07-093. ISSN   0045-8511. S2CID   86513079.