Thomas N. Sherratt

Last updated

Thomas "Tom" N. Sherratt is a professor of evolutionary ecology at Carleton University, Canada. [1] He is known for his research on camouflage, aposematism and mimicry.

Contents

Life

Sherratt earned his bachelor's degree at the University of Edinburgh, and gained his Ph.D. at the University of Dundee. He states that the two main themes in his research laboratory are the evolution of surprising traits in behaviour and morphology, including co-operation with unrelated individuals (as opposed to kin selection) and the existence of conspicuous warning signals; and the way that individual behaviour shapes the spatio-temporal dynamics of populations, as when travelling waves are set up when individuals move over a landscape feature. [1]

Work

Sherratt has contributed to more than 100 papers in major journals. His co-written 2004 book Avoiding Attack on camouflage, aposematism and mimicry has been cited at least 1175 times, while his co-written papers "Development of cooperative relationships through increasing investment" and "Evidence of intra-specific competition for food in a pelagic seabird" have each been cited over 300 times. [1] [2]

Books

Related Research Articles

<span class="mw-page-title-main">Predation</span> Biological interaction where a predator kills and eats a prey organism

Predation is a biological interaction where one organism, the predator, kills and eats another organism, its prey. It is one of a family of common feeding behaviours that includes parasitism and micropredation and parasitoidism. It is distinct from scavenging on dead prey, though many predators also scavenge; it overlaps with herbivory, as seed predators and destructive frugivores are predators.

<span class="mw-page-title-main">Mimicry</span> Imitation of another species for selective advantage

In evolutionary biology, mimicry is an evolved resemblance between an organism and another object, often an organism of another species. Mimicry may evolve between different species, or between individuals of the same species. Often, mimicry functions to protect a species from predators, making it an anti-predator adaptation. Mimicry evolves if a receiver perceives the similarity between a mimic and a model and as a result changes its behaviour in a way that provides a selective advantage to the mimic. The resemblances that evolve in mimicry can be visual, acoustic, chemical, tactile, or electric, or combinations of these sensory modalities. Mimicry may be to the advantage of both organisms that share a resemblance, in which case it is a form of mutualism; or mimicry can be to the detriment of one, making it parasitic or competitive. The evolutionary convergence between groups is driven by the selective action of a signal-receiver or dupe. Birds, for example, use sight to identify palatable insects and butterflies, whilst avoiding the noxious ones. Over time, palatable insects may evolve to resemble noxious ones, making them mimics and the noxious ones models. In the case of mutualism, sometimes both groups are referred to as "co-mimics". It is often thought that models must be more abundant than mimics, but this is not so. Mimicry may involve numerous species; many harmless species such as hoverflies are Batesian mimics of strongly defended species such as wasps, while many such well-defended species form Müllerian mimicry rings, all resembling each other. Mimicry between prey species and their predators often involves three or more species.

Ecological genetics is the study of genetics in natural populations. Traits in a population can be observed and quantified to represent a species adapting to a changing environment.

<span class="mw-page-title-main">Batesian mimicry</span> Bluffing imitation of a strongly defended species

Batesian mimicry is a form of mimicry where a harmless species has evolved to imitate the warning signals of a harmful species directed at a predator of them both. It is named after the English naturalist Henry Walter Bates, after his work on butterflies in the rainforests of Brazil.

<span class="mw-page-title-main">Anti-predator adaptation</span> Defensive feature of prey for selective advantage

Anti-predator adaptations are mechanisms developed through evolution that assist prey organisms in their constant struggle against predators. Throughout the animal kingdom, adaptations have evolved for every stage of this struggle, namely by avoiding detection, warding off attack, fighting back, or escaping when caught.

<span class="mw-page-title-main">Signalling theory</span> Theory in evolutionary biology

Within evolutionary biology, signalling theory is a body of theoretical work examining communication between individuals, both within species and across species. The central question is when organisms with conflicting interests, such as in sexual selection, should be expected to provide honest signals rather than cheating. Mathematical models describe how signalling can contribute to an evolutionarily stable strategy.

<span class="mw-page-title-main">Müllerian mimicry</span> Mutually beneficial mimicry of strongly defended species

Müllerian mimicry is a natural phenomenon in which two or more well-defended species, often foul-tasting and sharing common predators, have come to mimic each other's honest warning signals, to their mutual benefit. The benefit to Müllerian mimics is that predators only need one unpleasant encounter with one member of a set of Müllerian mimics, and thereafter avoid all similar coloration, whether or not it belongs to the same species as the initial encounter. It is named after the German naturalist Fritz Müller, who first proposed the concept in 1878, supporting his theory with the first mathematical model of frequency-dependent selection, one of the first such models anywhere in biology.

<span class="mw-page-title-main">Aposematism</span> Honest signalling of an animals powerful defences

Aposematism is the advertising by an animal to potential predators that it is not worth attacking or eating. This unprofitability may consist of any defenses which make the prey difficult to kill and eat, such as toxicity, venom, foul taste or smell, sharp spines, or aggressive nature. These advertising signals may take the form of conspicuous coloration, sounds, odours, or other perceivable characteristics. Aposematic signals are beneficial for both predator and prey, since both avoid potential harm.

<span class="mw-page-title-main">Crypsis</span> Aspect of animal behaviour and morphology

In ecology, crypsis is the ability of an animal or a plant to avoid observation or detection by other animals. It may be a predation strategy or an antipredator adaptation. Methods include camouflage, nocturnality, subterranean lifestyle and mimicry. Crypsis can involve visual, olfactory or auditory concealment. When it is visual, the term cryptic coloration, effectively a synonym for animal camouflage, is sometimes used, but many different methods of camouflage are employed by animals or plants.

<span class="mw-page-title-main">Edward Bagnall Poulton</span> British evolutionary biologist

Sir Edward Bagnall Poulton, FRS HFRSE FLS was a British evolutionary biologist, a lifelong advocate of natural selection through a period in which many scientists such as Reginald Punnett doubted its importance. He invented the term sympatric for evolution of species in the same place, and in his book The Colours of Animals (1890) was the first to recognise frequency-dependent selection. Poulton is also remembered for his pioneering work on animal coloration. He is credited with inventing the term aposematism for warning coloration, as well as for his experiments on 'protective coloration' (camouflage). Poulton became Hope Professor of Zoology at the University of Oxford in 1893.

<span class="mw-page-title-main">Hugh B. Cott</span> English zoologist and camouflage expert (1900–1987)

Hugh Bamford Cott was a British zoologist, an authority on both natural and military camouflage, and a scientific illustrator and photographer. Many of his field studies took place in Africa, where he was especially interested in the Nile crocodile, the evolution of pattern and colour in animals. During the Second World War, Cott worked as a camouflage expert for the British Army and helped to influence War Office policy on camouflage. His book Adaptive Coloration in Animals (1940), popular among serving soldiers, was the major textbook on camouflage in zoology of the twentieth century. After the war, he became a Fellow of Selwyn College, Cambridge. As a Fellow of the Zoological Society of London, he undertook expeditions to Africa and the Amazon to collect specimens, mainly reptiles and amphibians.

<span class="mw-page-title-main">Automimicry</span> Mimicry of part of own body, e.g. the head

In zoology, automimicry, Browerian mimicry, or intraspecific mimicry, is a form of mimicry in which the same species of animal is imitated. There are two different forms.

Graeme Ruxton is a zoologist known for his research into behavioural ecology and evolutionary ecology.

<span class="mw-page-title-main">Animal coloration</span> General appearance of an animal

Animal colouration is the general appearance of an animal resulting from the reflection or emission of light from its surfaces. Some animals are brightly coloured, while others are hard to see. In some species, such as the peafowl, the male has strong patterns, conspicuous colours and is iridescent, while the female is far less visible.

<i>Arichanna gaschkevitchii</i> Species of moth

Arichanna gaschkevitchii is a species of geometrid moth native to Japan and commonly found throughout the country. The adult's wingspan can reach a length of 40–50 millimetres (1.6–2.0 in). This moth will store large amounts of grayanotoxins from the larval host plant in the body tissue to deter predators. The species was first described by Victor Motschulsky in 1860.

<i>Adaptive Coloration in Animals</i> 1940 textbook on camouflage, mimicry and aposematism by Hugh Cott

Adaptive Coloration in Animals is a 500-page textbook about camouflage, warning coloration and mimicry by the Cambridge zoologist Hugh Cott, first published during the Second World War in 1940; the book sold widely and made him famous.

The novel world method is a technique used in animal behaviour experiments that address questions on the evolution of warning signals that chemically defended prey use to deter predators, and also on warning signal mimicry.

Deception in animals is the transmission of misinformation by one animal to another, of the same or different species, in a way that propagates beliefs that are not true.

<i>Formiscurra indicus</i> Species of true bug

Formiscurra indicus is a species of planthopper in the family Caliscelidae found in southern India. A related species, Formiscurra atlas occurs in southwestern Ethiopia. Like others of its family they have short wings, suck plant sap and escape by leaping. The species shows great sexual dimorphism. The male of this half centimeter-long insect has an enlarged lobe in front of its head, the frons or metope, giving it an ant-like appearance. Females do not have such an enlarged structure but have a slightly long snout and differ slightly in body shape. The species is found mainly on low vegetation in open scrub and grass habitats.

<span class="mw-page-title-main">Coloration evidence for natural selection</span> Early evidence for Darwinism from animal coloration

Animal coloration provided important early evidence for evolution by natural selection, at a time when little direct evidence was available. Three major functions of coloration were discovered in the second half of the 19th century, and subsequently used as evidence of selection: camouflage ; mimicry, both Batesian and Müllerian; and aposematism.

References

  1. 1 2 3 "Tom Sherratt". Carleton University. Retrieved 1 January 2018.
  2. "Thomas N. Sherratt". Google Scholar. Retrieved 1 January 2018.