Wood gas

Last updated
Flame from a wood gas generator Woodgas Flame.jpg
Flame from a wood gas generator

Wood gas is a fuel gas that can be used for furnaces, stoves, and vehicles. During the production process, biomass or related carbon-containing materials are gasified within the oxygen-limited environment of a wood gas generator to produce a combustible mixture. In some gasifiers this process is preceded by pyrolysis, where the biomass or coal is first converted to char, releasing methane and tar rich in polycyclic aromatic hydrocarbons.

Contents

In stark contrast with synthesis gas, which is almost pure mixture of H2 / CO , wood gas also contains a variety of organic compound ("distillates") that require scrubbing for use in other applications. Depending on the kind of biomass, a variety of contaminants are produced that will condense out as the gas cools. When producer gas is used to power cars and boats [1] or distributed to remote locations it is necessary to scrub the gas to remove the materials that can condense and clog carburetors and gas lines. Anthracite and coke are preferred for automotive use, because they produce the smallest amount of contamination, allowing smaller, lighter scrubbers to be used.

History

A bus, powered by wood gas generated by a gasifier on a trailer, Leeds, England c. 1943. Petrol Substitutes in USE For Public Transport in Leeds, England C 1943 D15675.jpg
A bus, powered by wood gas generated by a gasifier on a trailer, Leeds, England c.1943.

The first wood gasifier was apparently built by Gustav Bischof in 1839. The first vehicle powered by wood gas was built by T.H. Parker in 1901. [2] Around 1900, many cities delivered fuel gases (centrally produced, typically from coal) to residences. Natural gas came into use only in the 1930s.

Wood gas vehicles were used during World War II as a consequence of the rationing of fossil fuels. In Germany alone, around 500,000 "producer gas" vehicles were in use at the end of the war. Trucks, buses, tractors, motorcycles, ships, and trains were equipped with a wood gasification unit. In 1942, when wood gas had not yet reached the height of its popularity, there were about 73,000 wood gas vehicles in Sweden, [3] 65,000 in France, 10,000 in Denmark, and almost 8,000 in Switzerland. In 1944, Finland had 43,000 "woodmobiles", of which 30,000 were buses and trucks, 7,000 private vehicles, 4,000 tractors and 600 boats. [4]

Wood gasifiers are still manufactured in China and Russia for automobiles and as power generators for industrial applications. Trucks retrofitted with wood gasifiers are used in North Korea [5] in rural areas, particularly on the roads of the east coast.

A wood gas generator fitted to a Ford truck converted into a tractor, Per Larsen Tractor Museum, Sweden, 2003 Wood gasifier on epa tractor.jpg
A wood gas generator fitted to a Ford truck converted into a tractor, Per Larsen Tractor Museum, Sweden, 2003
Wood gasifier system Planet Mechanics wood gasifier.png
Wood gasifier system
A wood-gas powered car, Berlin, 1946. Note the secondary radiator, required to cool the gas before it is introduced into the engine Bundesarchiv Bild 183-V00670, Berlin, Pkw mit Holzgasantrieb.jpg
A wood-gas powered car, Berlin, 1946. Note the secondary radiator, required to cool the gas before it is introduced into the engine

Production

Fluidized bed gasifier in Gussing, Austria, operated on wood chips Holzvergaser Gussing.jpg
Fluidized bed gasifier in Güssing, Austria, operated on wood chips

A wood gasifier takes wood chips, sawdust, charcoal, coal, rubber or similar materials as fuel and burns these incompletely in a fire box, producing wood gas, solid ash and soot, the latter of which have to be removed periodically from the gasifier. The wood gas can then be filtered for tars and soot/ash particles, cooled and directed to an engine or fuel cell. [6] Most of these engines have strict purity requirements of the wood gas, so the gas often has to pass through extensive gas cleaning in order to remove or convert, i.e., "crack", tars and particles. The removal of tar is often accomplished by using a water scrubber. Running wood gas in an unmodified gasoline-burning internal combustion engine may lead to problematic accumulation of unburned compounds.

The quality of the gas from different "gasifiers" varies a great deal. Staged gasifiers, where pyrolysis and gasification occur separately instead of in the same reaction zone as was the case in the World War II gasifiers, can be engineered to produce essentially tar-free gas (less than 1 mg/m3), while single-reactor fluidized bed gasifiers may exceed 50,000 mg/m³ tar. The fluidized bed reactors have the advantage of being much more compact, with more capacity per unit volume and price. Depending on the intended use of the gas, tar can be beneficial, as well by increasing the heating value of the gas.

The heat of combustion of "producer gas" – a term used in the United States, meaning wood gas produced for use in a combustion engine – is rather low compared to other fuels. Taylor (1985) [7] reports that producer gas has a lower heat of combustion of 5.7 MJ/kg versus 55.9 MJ/kg for natural gas and 44.1 MJ/kg for gasoline. The heat of combustion of wood is typically 15–18 MJ/kg. Presumably, these values can vary somewhat from sample to sample. The same source reports the following chemical composition by volume which most likely is also variable:

A charcoal gas producer at the Nambassa alternative festival in New Zealand in 1981 Nambassa 1981 Alt Energy centre Gas Producer Photographer Michael Bennetts.jpg
A charcoal gas producer at the Nambassa alternative festival in New Zealand in 1981
“Producer gas” composition [7]
Chemical name
 
Formula
 
Fraction
Nitrogen
N2
50.9%
Carbon monoxide  
CO
27.0%
Hydrogen
H2
14.0%
Carbon dioxide
CO2
4.5%
Methane
CH4
3.0%
Oxygen
O2
0.6%

The composition of the gas is strongly dependent on the gasification process, the gasification medium (air, oxygen or steam), and the fuel moisture. Steam-gasification processes typically yield high hydrogen contents, downdraft fixed bed gasifiers yield high nitrogen concentrations and low tar loads, while updraft fixed bed gasifiers yield high tar loads. [6] [8]

During the production of charcoal for blackpowder, the volatile wood gas is vented. Extremely-high-surface-area carbon results, suitable for use as a fuel in black powder.

See also

Related Research Articles

<span class="mw-page-title-main">Producer gas</span> Obsolete form of gas fuel

Producer gas is fuel gas that is manufactured by blowing through a coke or coal fire with air and steam simultaneously. It mainly consists of carbon monoxide (CO), hydrogen (H2), as well as substantial amounts of nitrogen (N2). The caloric value of the producer gas is low (mainly because of its high nitrogen content), and the technology is obsolete. Improvements over producer gas, also obsolete, include water gas where the solid fuel is treated intermittently with air and steam and, far more efficiently synthesis gas where the solid fuel is replaced with methane.

Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principally used for producing ammonia or methanol. Syngas is combustible and can be used as a fuel. Historically, it has been used as a replacement for gasoline, when gasoline supply has been limited; for example, wood gas was used to power cars in Europe during WWII.

<span class="mw-page-title-main">Pyrolysis</span> Thermal decomposition of materials

The pyrolysis process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere.

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

Coal gas is a flammable gaseous fuel made from coal and supplied to the user via a piped distribution system. It is produced when coal is heated strongly in the absence of air. Town gas is a more general term referring to manufactured gaseous fuels produced for sale to consumers and municipalities.

Char is the solid material that remains after light gases and tar have been driven out or released from a carbonaceous material during the initial stage of combustion, which is known as carbonization, charring, devolatilization or pyrolysis.

<span class="mw-page-title-main">Dry distillation</span> Heating of solids to produce gases

Dry distillation is the heating of solid materials to produce gaseous products. The method may involve pyrolysis or thermolysis, or it may not.

<span class="mw-page-title-main">Fuel gas</span> Fuels which under ordinary conditions, are gaseous

Fuel gas is one of a number of fuels that under ordinary conditions are gaseous. Most fuel gases are composed of hydrocarbons, hydrogen, carbon monoxide, or mixtures thereof. Such gases are sources of energy that can be readily transmitted and distributed through pipes.

<span class="mw-page-title-main">Fossil fuel power station</span> Facility that burns fossil fuels to produce electricity

A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.

<span class="mw-page-title-main">Synthetic fuel</span> Fuel from carbon monoxide and hydrogen

Synthetic fuel or synfuel is a liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas.

<span class="mw-page-title-main">Wood gas generator</span> Device that converts timber or charcoal into wood gas suitable for an internal combustion engine

A wood gas generator is a gasification unit which converts timber or charcoal into wood gas, a producer gas consisting of atmospheric nitrogen, carbon monoxide, hydrogen, traces of methane, and other gases, which – after cooling and filtering – can then be used to power an internal combustion engine or for other purposes. Historically wood gas generators were often mounted on vehicles, but present studies and developments concentrate mostly on stationary plants.

<span class="mw-page-title-main">Biomass to liquid</span>

Biomass to liquid is a multi-step process of producing synthetic hydrocarbon fuels made from biomass via a thermochemical route.

<span class="mw-page-title-main">Waste-to-energy</span> Process of generating energy from the primary treatment of waste

Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source. WtE is a form of energy recovery. Most WtE processes generate electricity and/or heat directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels, often derived from the product syngas.

<span class="mw-page-title-main">Smouldering</span> Slow, flameless combustion

Smouldering or smoldering is the slow, flameless form of combustion, sustained by the heat evolved when oxygen directly attacks the surface of a condensed-phase fuel. Many solid materials can sustain a smouldering reaction, including coal, cellulose, wood, cotton, tobacco, cannabis, peat, plant litter, humus, synthetic foams, charring polymers including polyurethane foam and some types of dust. Common examples of smouldering phenomena are the initiation of residential fires on upholstered furniture by weak heat sources, and the persistent combustion of biomass behind the flaming front of wildfires.

Pyrolysis oil, sometimes also known as bio-crude or bio-oil, is a synthetic fuel with limited industrial application and under investigation as substitute for petroleum. It is obtained by heating dried biomass without oxygen in a reactor at a temperature of about 500 °C (900 °F) with subsequent cooling, separation from the aqueous phase and other processes. Pyrolysis oil is a kind of tar and normally contains levels of oxygen too high to be considered a pure hydrocarbon. This high oxygen content results in non-volatility, corrosiveness, partial miscibility with fossil fuels, thermal instability, and a tendency to polymerize when exposed to air. As such, it is distinctly different from petroleum products. Removing oxygen from bio-oil or nitrogen from algal bio-oil is known as upgrading.

<span class="mw-page-title-main">Biochar</span> Lightweight black residue, made of carbon and ashes, after pyrolysis of biomass

Biochar is a carbon-rich residue derived from the pyrolysis of biomass and stands at the intersection of sustainability, agriculture, and environmental stewardship. This versatile material, characterized by its stable carbon composition, emerges as a promising tool in addressing pressing challenges such as soil degradation, carbon sequestration, and agricultural productivity enhancement.

<span class="mw-page-title-main">Charcoal</span> Lightweight black carbon residue

Charcoal is a lightweight black carbon residue produced by strongly heating wood in minimal oxygen to remove all water and volatile constituents. In the traditional version of this pyrolysis process, called charcoal burning, often by forming a charcoal kiln, the heat is supplied by burning part of the starting material itself, with a limited supply of oxygen. The material can also be heated in a closed retort. Modern charcoal briquettes used for outdoor cooking may contain many other additives, e.g. coal.

<span class="mw-page-title-main">Torrefaction</span>

Torrefaction of biomass, e.g., wood or grain, is a mild form of pyrolysis at temperatures typically between 200 and 320 °C. Torrefaction changes biomass properties to provide a better fuel quality for combustion and gasification applications. Torrefaction produces a relatively dry product, which reduces or eliminates its potential for organic decomposition. Torrefaction combined with densification creates an energy-dense fuel carrier of 20 to 21 GJ/ton lower heating value (LHV). Torrefaction makes the material undergo Maillard reactions. Torrefied biomass can be used as an energy carrier or as a feedstock used in the production of bio-based fuels and chemicals.

<span class="mw-page-title-main">Top-lit updraft gasifier</span>

A top-lit updraft gasifier is a micro-kiln used to produce charcoal, especially biochar, and heat for cooking. A TLUD pyrolyzes organic material, including wood or manure, and uses a reburner to eliminate volatile byproducts of pyrolization. The process leaves mostly carbon as a residue, which can be incorporated into soil to create terra preta.

The circulating fluidized bed (CFB) is a type of Fluidized bed combustion that utilizes a recirculating loop for even greater efficiency of combustion. while achieving lower emission of pollutants. Reports suggest that up to 95% of pollutants can be absorbed before being emitted into the atmosphere. The technology is limited in scale however, due to its extensive use of limestone, and the fact that it produces waste byproducts.

References

  1. Farmer, Weston (1979). From My Old Boatshop. International Marine Publishing. p. 176-198.
  2. "Thomas Hugh Parker". localhistory.scit.wlv.ac.uk. Genealogy. Archived from the original on 2013-05-05. Retrieved 2008-02-05.
  3. Ekerholm, Helena (2012). "Cultural meanings of wood gas as automobile fuel in Sweden, 1930–1945". In Möllers, Nina; Zachmann, Karin (eds.). Past and Present Energy Societies: How energy connects politics, technologies, and cultures. Bielefeld, DE: Transcript Verlag.
  4. "Wood gas vehicles: Firewood in the fuel tank". Low-Tech Magazine. 18 January 2010. Retrieved October 8, 2023.
  5. Wogan, David (2 January 2013). "How North Korea fuels its military trucks with trees". Scientific American (scientificamerican.com) (blog). Retrieved June 22, 2016.
  6. 1 2 Nagel, Florian (2008). Electricity from wood through the combination of gasification and solid oxide fuel cells (Ph.D. thesis). Zurich, CH: Swiss Federal Institute of Technology. Retrieved October 8, 2023.
  7. 1 2 Taylor, Charles Fayette (1985). Internal-Combustion Engine in Theory and Practice. Vol. 1. Cambridge, MA: The MIT Press. pp. 46–47. ISBN   978-0-262-70027-6.
  8. Handbook of Biomass Downdraft Gasifier Engine Systems (PDF). Solar Technical Information Program (Report). Solar Energy Research Institute. U.S. Department of Energy. 1988. Section 5.2, paragraph 2, page 30.