Yeastract

Last updated
YEASTRACT
Database.png
Content
DescriptionTranscriptional Regulatory Associations in Saccharomyces cerevisiae
Organisms Saccharomyces cerevisiae
Contact
Authors http://yeastract.com/credits.php
Primary citationTeixeira & al. (2006) [1]
Release date2006
Access
Website http://www.yeastract.com

YEASTRACT (Yeast Search for Transcriptional Regulators And Consensus Tracking) is a curated repository of more than 48000 regulatory associations between transcription factors (TF) and target genes in Saccharomyces cerevisiae, based on more than 1200 bibliographic references. [1] It also includes the description of about 300 specific DNA binding sites for more than a hundred characterized TFs. Further information about each Yeast gene has been extracted from the Saccharomyces Genome Database (SGD). For each gene the associated Gene Ontology (GO) terms and their hierarchy in GO was obtained from the GO consortium. Currently, YEASTRACT maintains more than 7100 terms from GO. The nucleotide sequences of the promoter and coding regions for Yeast genes were obtained from Regulatory Sequence Analysis Tools (RSAT). All the information in YEASTRACT is updated regularly to match the latest data from SGD, GO consortium, RSA Tools and recent literature on yeast regulatory networks.

Contents

YEASTRACT includes DISCOVERER, a set of tools that can be used to identify complex motifs found to be over-represented in the promoter regions of co-regulated genes. [2] DISCOVERER is based on the MUSA algorithm. These algorithms take as input a list of genes and identify over-represented motifs, which can then be compared with transcription factor binding sites described in the YEASTRACT database.

Facilities are also provided to enable the exploitation of the gathered data when solving a number of biological questions, as exemplified in the Tutorial. YEASTRACT allows the identification of documented or potential transcription regulators of a given gene and of documented or potential regulons for each transcription factor. It also renders possible the comparison between DNA motifs and the transcription factor binding sites described in the literature. The system also provides a useful mechanism for grouping a list of genes (for instance a set of genes with similar expression profiles as revealed by microarray analysis) based on their regulatory associations with known transcription factors.

YEASTRACT provides a set of queries to search and retrieve important biological information from the gathered data and to predict transcription regulation networks in yeast from data emerging from gene-by-gene analysis or global approaches.

See also

Related Research Articles

<i>Saccharomyces cerevisiae</i> Species of yeast

Saccharomyces cerevisiae is a species of yeast. The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been originally isolated from the skin of grapes. It is one of the most intensively studied eukaryotic model organisms in molecular and cell biology, much like Escherichia coli as the model bacterium. It is the microorganism behind the most common type of fermentation. S. cerevisiae cells are round to ovoid, 5–10 μm in diameter. It reproduces by budding.

<span class="mw-page-title-main">DNA-binding protein</span> Proteins that bind with DNA, such as transcription factors, polymerases, nucleases and histones

DNA-binding proteins are proteins that have DNA-binding domains and thus have a specific or general affinity for single- or double-stranded DNA. Sequence-specific DNA-binding proteins generally interact with the major groove of B-DNA, because it exposes more functional groups that identify a base pair. However, there are some known minor groove DNA-binding ligands such as netropsin, distamycin, Hoechst 33258, pentamidine, DAPI and others.

RNA polymerase 1 is, in higher eukaryotes, the polymerase that only transcribes ribosomal RNA, a type of RNA that accounts for over 50% of the total RNA synthesized in a cell.

Cis-regulatory elements (CREs) or Cis-regulatory modules (CRMs) are regions of non-coding DNA which regulate the transcription of neighboring genes. CREs are vital components of genetic regulatory networks, which in turn control morphogenesis, the development of anatomy, and other aspects of embryonic development, studied in evolutionary developmental biology.

The Saccharomyces Genome Database (SGD) is a scientific database of the molecular biology and genetics of the yeast Saccharomyces cerevisiae, which is commonly known as baker's or budding yeast. Further information is located at the Yeastract curated repository.

<span class="mw-page-title-main">Small nucleolar RNA U3</span>

In molecular biology, U3 snoRNA is a non-coding RNA found predominantly in the nucleolus. U3 has C/D box motifs that technically make it a member of the box C/D class of snoRNAs; however, unlike other C/D box snoRNAs, it has not been shown to direct 2'-O-methylation of other RNAs. Rather, U3 is thought to guide site-specific cleavage of ribosomal RNA (rRNA) during pre-rRNA processing.

ChIP-sequencing, also known as ChIP-seq, is a method used to analyze protein interactions with DNA. ChIP-seq combines chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing to identify the binding sites of DNA-associated proteins. It can be used to map global binding sites precisely for any protein of interest. Previously, ChIP-on-chip was the most common technique utilized to study these protein–DNA relations.

BIOBASE is an international bioinformatics company headquartered in Wolfenbüttel, Germany. The company focuses on the generation, maintenance, and licensing of databases in the field of molecular biology, and their related software platforms.

<span class="mw-page-title-main">Pho4</span> Protein-coding gene in the species Saccharomyces cerevisiae S288c

Pho4 is a protein with a basic helix-loop-helix (bHLH) transcription factor. It is found in S. cerevisiae and other yeasts. It functions as a transcription factor to regulate phosphate responsive genes located in yeast cells. The Pho4 protein homodimer is able to do this by binding to DNA sequences containing the bHLH binding site 5'-CACGTG-3'. This sequence is found in the promoters of genes up-regulated in response to phosphate availability such as the PHO5 gene.

<span class="mw-page-title-main">Bacterial one-hybrid system</span> Method for identifying the sequence-specific target site of a DNA-binding domain

The bacterial one-hybrid (B1H) system is a method for identifying the sequence-specific target site of a DNA-binding domain. In this system, a given transcription factor (TF) is expressed as a fusion to a subunit of RNA polymerase. In parallel, a library of randomized oligonucleotides representing potential TF target sequences are cloned into a separate vector containing the selectable genes HIS3 and URA3. If the DNA-binding domain (bait) binds a potential DNA target site (prey) in vivo, it will recruit RNA polymerase to the promoter and activate transcription of the reporter genes in that clone. The two reporter genes, HIS3 and URA3, allow for positive and negative selections, respectively. At the end of the process, positive clones are sequenced and examined with motif-finding tools in order to resolve the favoured DNA target sequence.

An upstream activating sequence or upstream activation sequence (UAS) is a cis-acting regulatory sequence. It is distinct from the promoter and increases the expression of a neighbouring gene. Due to its essential role in activating transcription, the upstream activating sequence is often considered to be analogous to the function of the enhancer in multicellular eukaryotes. Upstream activation sequences are a crucial part of induction, enhancing the expression of the protein of interest through increased transcriptional activity. The upstream activation sequence is found adjacently upstream to a minimal promoter and serves as a binding site for transactivators. If the transcriptional transactivator does not bind to the UAS in the proper orientation then transcription cannot begin. To further understand the function of an upstream activation sequence, it is beneficial to see its role in the cascade of events that lead to transcription activation. The pathway begins when activators bind to their target at the UAS recruiting a mediator. A TATA-binding protein subunit of a transcription factor then binds to the TATA box, recruiting additional transcription factors. The mediator then recruits RNA polymerase II to the pre-initiation complex. Once initiated, RNA polymerase II is released from the complex and transcription begins.

TRANSFAC is a manually curated database of eukaryotic transcription factors, their genomic binding sites and DNA binding profiles. The contents of the database can be used to predict potential transcription factor binding sites.

The MEME suite is a collection of tools for the discovery and analysis of sequence motifs.

The transactivation domain or trans-activating domain (TAD) is a transcription factor scaffold domain which contains binding sites for other proteins such as transcription coregulators. These binding sites are frequently referred to as activation functions (AFs). TADs are named after their amino acid composition. These amino acids are either essential for the activity or simply the most abundant in the TAD. Transactivation by the Gal4 transcription factor is mediated by acidic amino acids, whereas hydrophobic residues in Gcn4 play a similar role. Hence, the TADs in Gal4 and Gcn4 are referred to as acidic or hydrophobic, respectively.

Transcription factors are proteins that bind genomic regulatory sites. Identification of genomic regulatory elements is essential for understanding the dynamics of developmental, physiological and pathological processes. Recent advances in chromatin immunoprecipitation followed by sequencing (ChIP-seq) have provided powerful ways to identify genome-wide profiling of DNA-binding proteins and histone modifications. The application of ChIP-seq methods has reliably discovered transcription factor binding sites and histone modification sites.

The Gal4 transcription factor is a positive regulator of gene expression of galactose-induced genes. This protein represents a large fungal family of transcription factors, Gal4 family, which includes over 50 members in the yeast Saccharomyces cerevisiae e.g. Oaf1, Pip2, Pdr1, Pdr3, Leu3.

<span class="mw-page-title-main">Pdr1p</span>

Pdr1p is a transcription factor found in yeast and is a key regulator of genes involved in general drug response. It induces the expression of ATP-binding cassette transporter, which can export toxic substances out of the cell, allowing cells to survive under general toxic chemicals. It binds to DNA sequences that contain certain motifs called pleiotropic drug response element (PDRE). Pdr1p is encoded by a gene called PDR1 on chromosome VII.

BCK2, also named CTR7, is an early cell cycle regulator expressed by the yeast Saccharomyces cerevisiae. It was first discovered in a screen for genes whose overexpression would suppress the phenotypes of PKC1 pathway mutations. Though its mechanism is currently unknown, it is believed to interact with Swi4 and Mcm1, both important transcriptional regulators of early cell cycle.

<span class="mw-page-title-main">SPT20</span> Transcription factor

Transcription factor SPT20 is a regulator of transcription. It can recruit TATA binding protein (TBP) and possible other base factors to bind to TATA box. The model of its action by example Saccharomyces cerevisiae was studied. It functions as a component of the transcriptional regulatory complex histone-acetylation a (HAT) SAGA, SALSA and FIG. SAGA is involved in the regulation of transcription-dependent RNA polymerase II about 10% of the yeast gene. In promoter, SAGA is required to engage basal transcription mechanisms. Affects RNA polymerase II transcription activity through various activities, such as TBP interaction and promoter selectivity, interaction with transcription activators and modification chromatin by histone acetylation (GCN5) and ubiquitin deacetylation (UBP8). SAGA acetylates nucleosome or histone H3 to some extent.

References

  1. 1 2 Teixeira, M. C.; Monteiro, P; Jain, P; Tenreiro, S; Fernandes, AR; Mira, NP; Alenquer, M; Freitas, AT; Oliveira, AL; Sá-Correia, I (Jan 2006). "The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae". Nucleic Acids Res. England. 34 (Database issue): D446–51. doi:10.1093/nar/gkj013. PMC   1347376 . PMID   16381908.
  2. Monteiro, PT; Mendes, ND; Teixeira, MC; d'Orey, S; Tenreiro, S; Mira, NP; Pais, H; Francisco, AP; Carvalho, AM; Lourenço, AB; Sá-Correia, I; Oliveira, AL; Freitas, AT (2008). "YEASTRACT-DISCOVERER: New tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae". Nucleic Acids Research. 36 (Database issue): D132–6. doi:10.1093/nar/gkm976. PMC   2238916 . PMID   18032429.