459

Last updated

Millennium: 1st millennium
Centuries:
Decades:
Years:
459 in various calendars
Gregorian calendar 459
CDLIX
Ab urbe condita 1212
Assyrian calendar 5209
Balinese saka calendar 380–381
Bengali calendar −134
Berber calendar 1409
Buddhist calendar 1003
Burmese calendar −179
Byzantine calendar 5967–5968
Chinese calendar 戊戌年 (Earth  Dog)
3156 or 2949
     to 
己亥年 (Earth  Pig)
3157 or 2950
Coptic calendar 175–176
Discordian calendar 1625
Ethiopian calendar 451–452
Hebrew calendar 4219–4220
Hindu calendars
 - Vikram Samvat 515–516
 - Shaka Samvat 380–381
 - Kali Yuga 3559–3560
Holocene calendar 10459
Iranian calendar 163 BP – 162 BP
Islamic calendar 168 BH – 167 BH
Javanese calendar 344–345
Julian calendar 459
CDLIX
Korean calendar 2792
Minguo calendar 1453 before ROC
民前1453年
Nanakshahi calendar −1009
Seleucid era 770/771 AG
Thai solar calendar 1001–1002
Tibetan calendar 阳土狗年
(male Earth-Dog)
585 or 204 or −568
     to 
阴土猪年
(female Earth-Pig)
586 or 205 or −567
The Avukana Buddha Statue (Sri Lanka) Buda de Avukana - 03.jpg
The Avukana Buddha Statue (Sri Lanka)

Year 459 ( CDLIX ) was a common year starting on Thursday (link will display the full calendar) of the Julian calendar. At the time, it was known as the Year of the Consulship of Ricimer and Patricius (or, less frequently, year 1212 Ab urbe condita ). The denomination 459 for this year has been used since the early medieval period, when the Anno Domini calendar era became the prevalent method in Europe for naming years.

Contents

Events

By place

Roman Empire

Britannia

Europe

Asia

Other events

• Total lunar eclipse on May 3, in which totality was for 106 minutes and 32 seconds. A totality of this length will not occur until August 19, 4763. [1]

Births

Deaths

Related Research Articles

<span class="mw-page-title-main">Lunar eclipse</span> Astronomical event

A lunar eclipse is an astronomical event that occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. Such an alignment occurs during an eclipse season, approximately every six months, during the full moon phase, when the Moon's orbital plane is closest to the plane of the Earth's orbit.

<span class="mw-page-title-main">New moon</span> First lunar phase, the definition varies

In astronomy, the new moon is the first lunar phase, when the Moon and Sun have the same ecliptic longitude. At this phase, the lunar disk is not visible to the naked eye, except when it is silhouetted against the Sun during a solar eclipse.

The 450s decade ran from January 1, 450, to December 31, 459.

<span class="mw-page-title-main">Baily's beads</span> Feature of total and annular solar eclipses

The Baily's beads, diamond ring or more rarely double diamond ring effects, are features of total and annular solar eclipses. Although caused by the same phenomenon, they are distinct events during these types of solar eclipses. As the Moon covers the Sun during a solar eclipse, the rugged topography of the lunar limb allows beads of sunlight to shine through in some places while not in others. They are named for Francis Baily, who explained the effects in 1836. The diamond ring effects are seen when only one or two beads are left, appearing as shining "diamonds" set in a bright ring around the lunar silhouette.

<span class="mw-page-title-main">Solar eclipse of July 22, 2009</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of the orbit on July 22, 2009, with a magnitude of 1.07991. It was the longest total solar eclipse during the 21st century with totality lasting a maximum of 6 minutes and 38.86 seconds off the coast of Southeast Asia, causing tourist interest in eastern China, Pakistan, Japan, India, Nepal and Bangladesh. Its greatest magnitude was 1.07991, occurring only 6 hours, 18 minutes after perigee.

<span class="mw-page-title-main">Solar eclipse</span> Natural phenomenon wherein the Sun is obscured by the Moon

A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby obscuring the view of the Sun from a small part of Earth, totally or partially. Such an alignment occurs approximately every six months, during the eclipse season in its new moon phase, when the Moon's orbital plane is closest to the plane of Earth's orbit. In a total eclipse, the disk of the Sun is fully obscured by the Moon. In partial and annular eclipses, only part of the Sun is obscured. Unlike a lunar eclipse, which may be viewed from anywhere on the night side of Earth, a solar eclipse can only be viewed from a relatively small area of the world. As such, although total solar eclipses occur somewhere on Earth every 18 months on average, they recur at any given place only once every 360 to 410 years.

<span class="mw-page-title-main">Mesoamerican Long Count calendar</span> Calendar used by several pre-Columbian Mesoamerican cultures

The Mesoamerican Long Count calendar is a non-repeating base-20 and base-18 calendar used by several pre-Columbian Mesoamerican cultures, most notably the Maya. For this reason, it is often known as the MayaLong Count calendar. Using a modified vigesimal tally, the Long Count calendar identifies a day by counting the number of days passed since a mythical creation date that corresponds to August 11, 3114 BCE in the proleptic Gregorian calendar. The Long Count calendar was widely used on monuments.

<span class="mw-page-title-main">December 2010 lunar eclipse</span> Total Lunar eclipse of 21 December 2010

A total lunar eclipse occurred from 5:27 to 11:06 UTC on 21 December 2010, coinciding with the date of the Winter solstice in the Northern Hemisphere and Summer solstice in the Southern Hemisphere. It was visible in its entirety as a total lunar eclipse in North and South America, Iceland, Ireland, Britain and northern Scandinavia.

<span class="mw-page-title-main">Solar eclipse of July 11, 2010</span> Total eclipse

The total solar eclipse of July 11, 2010 occurred over the southern Pacific Ocean. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 1, 2008</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of the orbit on August 1, 2008. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It had a magnitude of 1.0394 that was visible from a narrow corridor through northern Canada (Nunavut), Greenland, central Russia, eastern Kazakhstan, western Mongolia and China. Visible north of the Arctic Circle, it belonged to the so-called midnight sun eclipses. The largest city in its path was Novosibirsk in Russia. The eclipse happened only 2+12 days after the perigee that occurred on July 29, 2008, and the Moon's apparent diameter was larger than average.

<span class="mw-page-title-main">Solar eclipse of July 2, 2019</span> Total eclipse

A total solar eclipse occurred at the ascending node of the Moon's orbit on Tuesday, July 2, 2019, with an eclipse magnitude of 1.0459. Totality was visible from the southern Pacific Ocean east of New Zealand to the Coquimbo Region in Chile and Central Argentina at sunset, with the maximum of 4 minutes 33 seconds visible from the Pacific Ocean. The Moon was only 2.4 days before perigee, making it fairly large.

<span class="mw-page-title-main">Solar eclipse of August 12, 2026</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of the orbit on Wednesday, August 12, 2026, two days past perigee, in parts of North America and Europe. The total eclipse will pass over the Arctic, Greenland, Iceland, Atlantic Ocean and northern Spain. The points of greatest duration and greatest eclipse will be just 45 km (28 mi) off the western coast of Iceland by 65°10.3' N and 25°12.3' W, where the totality will last 2m 18.21s. It will be the first total solar eclipse visible in Iceland since June 30, 1954, also Solar Saros series 126, and the only one to occur in the 21st century as the next one visible over Iceland will be in 2196. As lunar perigee will occur on August 10, 2026, two days before the total solar eclipse, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 2, 2027</span> Total eclipse

A total solar eclipse will occur over much of the central Eastern Hemisphere on Monday, August 2, 2027. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 7, 1970</span> Total eclipse

A total solar eclipse occurred on Saturday, March 7, 1970, visible across most of North America and Central America.

<span class="mw-page-title-main">Solar eclipse of November 22, 1984</span> Total eclipse

A total solar eclipse occurred on November 22, 1984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Indonesia, Papua New Guinea and southern Pacific Ocean. West of the International Date Line the eclipse took place on November 23, including all land in the path of totality. Occurring only 2.1 days after perigee, the Moon's apparent diameter was fairly larger.

<span class="mw-page-title-main">Solar eclipse of November 25, 2030</span> Total eclipse

A total solar eclipse will occur on Monday, November 25, 2030. Totality will be visible in Namibia, Botswana, South Africa, Lesotho, and Australia.

<span class="mw-page-title-main">Solar eclipse of July 22, 2028</span> Total eclipse

A total solar eclipse will occur on Saturday, July 22, 2028. The central line of the path of the eclipse will cross the Australian continent from the Kimberley region in the north-west and continue in a south-easterly direction through Western Australia, the Northern Territory, south-west Queensland and New South Wales, close to the towns of Wyndham, Kununurra, Tennant Creek, Birdsville, Bourke and Dubbo, and continuing on through the centre of Sydney, where the eclipse will have a duration of over three minutes. It will also cross Queenstown and Dunedin, New Zealand. Totality will also be viewable from two of Australia's external territories: Christmas Island and the Cocos (Keeling) Islands.

<span class="mw-page-title-main">Solar eclipse of July 13, 2037</span> Total eclipse

A total solar eclipse will occur on July 13, 2037. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will pass through the centre of Brisbane and the Gold Coast, as well as Geraldton, Western Australia

<span class="mw-page-title-main">Solar eclipse of June 20, 1974</span> Total eclipse

A total solar eclipse occurred on June 20, 1974. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 4, 1943</span> Total eclipse

A total solar eclipse occurred between Thursday, February 4 and Friday, February 5, 1943. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It began on the morning on February 5 (Friday) over northeastern China, Primorsky Krai in the Soviet Union, Hokkaido and southern Kunashir Island in Japan and ended at sunset on February 4 (Thursday) over Alaska and Yukon in Canada.

References

  1. "EclipseWise - Six Millennium Catalog of Lunar Eclipses". eclipsewise.com. Retrieved May 21, 2024.
  2. Skidmore, Joel (2010). The Rulers of Palenque (PDF) (Fifth ed.). Mesoweb Publications. p. 18. Retrieved February 19, 2024.
  3. Hill, Jonathan (2010). Dictionary of Theologians: To 1308. Cambridge: James Clarke & Co. p. 514. ISBN   978-0-22717-906-2.