Annunciator panel

Last updated

An annunciator panel, also known in some aircraft as the Centralized Warning Panel (CWP) or Caution Advisory Panel (CAP), is a group of lights used as a central indicator of status of equipment or systems in an aircraft, industrial process, building or other installation. Usually, the annunciator panel includes a main warning lamp or audible signal to draw the attention of operating personnel to the annunciator panel for abnormal events or condition.

Contents

Aviation

C441annunciatorpanel.JPG
The annunciator panel of a Cessna 441 aircraft. The illuminated process annunciators are those that are normally lit when the engines are not running, plus one annunciating that the aircraft's door is not locked
C441annuncloseup.JPG
Close-up view of the left module of the Cessna 441 annunciator panel in 'test' mode

In the aircraft industry, annunciator panels are groupings of annunciator lights that indicate status of the aircraft's subsystems. The lights are usually accompanied with a test switch, which when pressed illuminates all the lights to confirm they are in working order. More advanced modern aircraft replaces these with the integrated electronic Engine Indicating and Crew Alerting System or Electronic Centralised Aircraft Monitor.

An aviation annunciator panel will have a test switch to check for burned out lamps. Indicator lights are grouped together by their associated systems into various panels of lights. [1]

Lamp colours are normally given the following meanings:

The annunciator panel may display warnings or cautions that are not necessarily indicative of a problem; for example, a Cessna 172 on its after-landing roll will often flicker the "Volts" warning simply due to the idle throttle position and therefore the lower voltage output of the alternator to the aircraft's electrical system.

More complicated aircraft will feature Master Warning and Master Caution lights/switches. In the event of any red or yellow annunciator being activated, the yellow or red master light, usually located elsewhere in the pilot's line of sight, will illuminate. In most installations they will flash and an audible alert will accompany them. These "masters" will not stop flashing until they have been acknowledged, usually by pressing the light itself, and in some cases the audible alert will also continue until this acknowledgement. On some aircraft (most Boeing airliners, for example) the "masters" will also flash briefly and the audible alert will sound whenever the autopilot is disconnected, as an additional reminder to the pilots that manual control is now required.

Process control

In industrial process control, an annunciator panel is a system to alert operators of alarm conditions in the plant. Multiple back-lit windows are provided, each engraved with the name of a process alarm. Lamps in each window are controlled by hard-wired switches in the plant, arranged to operate when a process condition enters an abnormal state (such as high temperature, low pressure, loss of cooling water flow, or many others). Single point or multipoint alarm logic modules operate the window lights based on a preselected ISA 18.1 or custom sequence.

In one common alarm sequence, the light in a window will flash and a bell or horn will sound to attract the operator's attention when the alarm condition is detected. The operator can silence the alarm with a button, and the window will remain lit as long as the process is in the alarm state. When the alarm clears (process condition returns to normal), the lamps in the window go out.

Alarm Annunciator used for process controls Datmeltech Alarm Annunciator 2.jpg
Alarm Annunciator used for process controls
Alarm Annunciators being used in electricity distribution substations Annunciator Substation.jpg
Alarm Annunciators being used in electricity distribution substations
Example of an Alarm Annunciator that would be used in a variety of different plants Apex Annunciator.jpg
Example of an Alarm Annunciator that would be used in a variety of different plants

Annunciator panels were relatively costly to install in a plant because they had dedicated wiring to the alarm initiating devices in the process plant. Since incandescent lamps were used, a lamp test button was always provided to allow early detection of failed lamps. Modern electronic distributed control systems usually require less wiring since the process signals can be monitored within the control system, and the engraved windows are replaced by alphanumeric displays on a computer monitor. [2]

Behavior of alarm systems, and colors used to indicate alarms, are standardized. Standards such as ISA 18.1 or EN 60073 simplify purchase of systems and training of operators by giving standard alarm sequences.

Obsolescence and revival

The introduction of computer monitor based control systems during the 1980s and 1990s saw a wholesale absorption of alarm window displays onto the computer screen. This created a downturn in the sales of the conventional alarm annunciator systems, and many of the companies manufacturing these alarm annunciator products were either sold off or went out of business. This has left today[ when? ] a major obsolescence support problem for customers who are still using these alarm annunciator systems as part of their safety systems.

Over the last five years[ when? ] the alarm annunciator has seen a resurgence in popularity especially for use in IEC 61508 SIL 1 and SHE (Safety Health and Environmental) alarm monitoring applications. [ citation needed ] The modern trend is to identify critical alarms and return them from the computer screen to discrete alarm windows. This is being done for two reasons. Firstly, alarm annunciators offer pattern recognition to the operators in the form of LED alarm fascias instead of just providing an exhaustive list of alarms and events which the operators have to scroll through and in some instances alarms can be overlooked. Secondly, the analysis of plant failure modes is leading to the separation of critical alarm monitoring and process control systems for safety reasons.

SEL Annunciator in a Control Panel during Relay Testing Annunciator Control Panel.jpg
SEL Annunciator in a Control Panel during Relay Testing

Fire Alarm

In large buildings, a fire alarm control panel is located in a secure location, such as in an electrical room where it is also convenient for running electrical wires for system components or in a fire command center. A fire alarm annunciator panel is located where it is accessible to fire-fighting crews, such as at building entrances/exits. The annunciator panel will indicate the system status using lamps (or LEDs), an audible warning tone, and depending on the system technology, the exact location or approximate physical location of the source of a fire alarm in the building. In a large, high occupancy building such as an office tower or hotel, the fire annunciator may also be associated with a control panel for building ventilation systems, and may also include emergency communication systems for the building.

See also

Related Research Articles

Instrumentation is a collective term for measuring instruments, used for indicating, measuring, and recording physical quantities. It is also a field of study about the art and science about making measurement instruments, involving the related areas of metrology, automation, and control theory. The term has its origins in the art and science of scientific instrument-making.

<span class="mw-page-title-main">Physical security</span> Measures designed to deny unauthorized access

Physical security describes security measures that are designed to deny unauthorized access to facilities, equipment, and resources and to protect personnel and property from damage or harm. Physical security involves the use of multiple layers of interdependent systems that can include CCTV surveillance, security guards, protective barriers, locks, access control, perimeter intrusion detection, deterrent systems, fire protection, and other systems designed to protect persons and property.

<span class="mw-page-title-main">Alarm device</span> Type of signal (or device) that alerts people to a dangerous condition

An alarm device is a mechanism that gives an audible, visual, combination, or other kind of alarm signal to alert someone to a problem or condition that requires urgent attention.

<span class="mw-page-title-main">Dead man's switch</span> Equipment that activates or deactivates upon the incapacitation of operator

A dead man's switch is a switch that is designed to be activated or deactivated if the human operator becomes incapacitated, such as through death, loss of consciousness, or being bodily removed from control. Originally applied to switches on a vehicle or machine, it has since come to be used to describe other intangible uses, as in computer software.

<span class="mw-page-title-main">Fire alarm notification appliance</span> Device used to signal a fire-based or other emergency

A fire alarm notification appliance is an active fire protection component of a fire alarm system. A notification appliance may use audible, visible, or other stimuli to alert the occupants of a fire or other emergency condition requiring action. Audible appliances have been in use longer than any other method of notification. Initially, all appliances were either electromechanical horns or electric bells, which would later be replaced by electronic sounders. Most of today's appliances produce sound levels between 70 and 100 decibels at three feet.

Alarm management is the application of human factors and ergonomics along with instrumentation engineering and systems thinking to manage the design of an alarm system to increase its usability. Most often the major usability problem is that there are too many alarms annunciated in a plant upset, commonly referred to as alarm flood, since it is so similar to a flood caused by excessive rainfall input with a basically fixed drainage output capacity. However, there can also be other problems with an alarm system such as poorly designed alarms, improperly set alarm points, ineffective annunciation, unclear alarm messages, etc. Poor alarm management is one of the leading causes of unplanned downtime, contributing to over $20B in lost production every year, and of major industrial incidents such as the one in Texas City. Developing good alarm management practices is not a discrete activity, but more of a continuous process.

<span class="mw-page-title-main">Security alarm</span> System that detects unauthorised entry

A security alarm is a system designed to detect intrusions, such as unauthorized entry, into a building or other areas, such as a home or school. Security alarms protect against burglary (theft) or property damage, as well as against intruders. Examples include personal systems, neighborhood security alerts, car alarms, and prison alarms.

<span class="mw-page-title-main">Electronic flight instrument system</span> Display system in an aircrafts cockpit which displays flight information electronically

In aviation, an electronic flight instrument system (EFIS) is a flight instrument display system in an aircraft cockpit that displays flight data electronically rather than electromechanically. An EFIS normally consists of a primary flight display (PFD), multi-function display (MFD), and an engine indicating and crew alerting system (EICAS) display. Early EFIS models used cathode ray tube (CRT) displays, but liquid crystal displays (LCD) are now more common. The complex electromechanical attitude director indicator (ADI) and horizontal situation indicator (HSI) were the first candidates for replacement by EFIS. Now, however, few flight deck instruments cannot be replaced by an electronic display.

<span class="mw-page-title-main">Push-button</span> Device to create an electronic circuit

A push-button or simply button is a simple switch mechanism to control some aspect of a machine or a process. Buttons are typically made out of hard material, usually plastic or metal. The surface is usually flat or shaped to accommodate the human finger or hand, so as to be easily depressed or pushed. Buttons are most often biased switches, although many un-biased buttons still require a spring to return to their un-pushed state.

<span class="mw-page-title-main">Fire alarm control panel</span> Controlling component of a fire alarm system

A fire alarm control panel (FACP), fire alarm control unit (FACU), fire indicator panel (FIP), or simply fire alarm panel is the controlling component of a fire alarm system. The panel receives information from devices designed to detect and report fires, monitors their operational integrity, and provides for automatic control of equipment, and transmission of information necessary to prepare the facility for fire based on a predetermined sequence. The panel may also supply electrical energy to operate any associated initiating device, notification appliance, control, transmitter, or relay. There are four basic types of panels: coded panels, conventional panels, addressable panels, and multiplex systems.

Building automation (BAS), also known as building management system (BMS) or building energy management system (BEMS), is the automatic centralized control of a building's HVAC, electrical, lighting, shading, access control, security systems, and other interrelated systems. Some objectives of building automation are improved occupant comfort, efficient operation of building systems, reduction in energy consumption, reduced operating and maintaining costs and increased security.

<span class="mw-page-title-main">Emergency vehicle equipment</span> Equipment used by emergency vehicles

Emergency vehicle equipment is any equipment fitted to, or carried by, an emergency vehicle, other than the equipment that a standard non-emergency vehicle is fitted with.

<span class="mw-page-title-main">Tell-tale (automotive)</span> Light that indicates malfunction of a system

A tell-tale, sometimes called an idiot light or warning light, is an indicator of malfunction or operation of a system, indicated by a binary (on/off) illuminated light, symbol or text legend.

<span class="mw-page-title-main">Fire alarm system</span> A system, that works using multiple devices to warn of a fire or other types of emergencies

A fire alarm system is a building system designed to detect, alert occupants, and alert emergency forces of the presence of fire, smoke, carbon monoxide, or other fire-related emergencies. Fire alarm systems are required in most commercial buildings. They may include smoke detectors, heat detectors, and manual fire alarm activation devices. All components of a fire alarm system are connected to a fire alarm control panel. Fire alarm control panels are usually found in an electrical or panel room. Fire alarm systems generally use visual and audio signalization to warn the occupants of the building. Some fire alarm systems may also disable elevators, which are unsafe to use during a fire under most circumstances.

<span class="mw-page-title-main">Front panel</span>

A front panel was used on early electronic computers to display and allow the alteration of the state of the machine's internal registers and memory. The front panel usually consisted of arrays of indicator lamps, digit and symbol displays, toggle switches, dials, and push buttons mounted on a sheet metal face plate. In early machines, CRTs might also be present. Prior to the development of CRT system consoles, many computers such as the IBM 1620 had console typewriters.

<span class="mw-page-title-main">Fire alarm call box</span> Device for notifying a fire department of a fire

A fire alarm box, fire alarm call box, or fire alarm pull box is a device used for notifying a fire department of a fire or a fire alarm activation. Typically installed on street corners or on the outside of commercial buildings in urban areas, they were the main means of summoning firefighters before the general availability of telephones. Fire Alarm Call Boxes are still widely used in many cities and towns.

<span class="mw-page-title-main">Aviation obstruction lighting</span> Aircraft obstacle avoidance systems

Aviation obstruction lighting is used to enhance the visibility of structures or fixed obstacles which may conflict with the safe navigation of aircraft. Obstruction lighting is commonly installed on towers, buildings, and even fences located in areas where aircraft may be operating at low altitudes. In certain areas, some aviation regulators mandate the installation, operation, color, and/or status notification of obstruction lighting. For maximum visibility and collision-avoidance, these lighting systems commonly employ one or more high-intensity strobe or LED devices which can be seen by pilots from many miles away from the obstruction.

A gas detector is a device that detects the presence of gases in an area, often as part of a safety system. A gas detector can sound an alarm to operators in the area where the leak is occurring, giving them the opportunity to leave. This type of device is important because there are many gases that can be harmful to organic life, such as humans or animals.

<span class="mw-page-title-main">Stack light</span>

Stack lights are commonly used on equipment in industrial manufacturing and process control environments to provide visual and audible indicators of a machine's status to machine operators, technicians, production managers and factory personnel. They are a form of andon: a manufacturing system that identifies errors as they happen.

<span class="mw-page-title-main">Level crossings in the United Kingdom</span> Overview of level crossings in the United Kingdom

There are around 6,000 level crossings in the United Kingdom, of which about 1,500 are public highway crossings. This number is gradually being reduced as the risk of accidents at level crossings is considered high. The director of the UK Railway Inspectorate commented in 2004 that "the use of level crossings contributes the greatest potential for catastrophic risk on the railways." The creation of new level crossings on the national network is banned, with bridges and tunnels being the more favoured options. The cost of making significant reductions, other than by simply closing the crossings, is substantial; some commentators argue that the money could be better spent. Some 5,000 crossings are user-worked crossings or footpaths with very low usage. The removal of crossings can improve train performance and lower accident rates, as some crossings have low rail speed limits enforced on them to protect road users. In fact, between 1845 and 1933, there was a 4 miles per hour (6.4 km/h) speed limit on level crossings of turnpike roads adjacent to stations for lines whose authorising act of Parliament had been consolidated in the Railways Clauses Consolidation Act 1845 although this limit was at least sometimes disregarded.

References

  1. Photos: British Aerospace BAe-146-200A Aircraft Pictures | Airliners.net
  2. Béla G. Lipták (ed), Instrument engineers' handbook: Process software and digital networks, Volume 3, CRC Press, 2002 ISBN   0-8493-1082-2, page 289