Apparent horizon

Last updated

In general relativity, an apparent horizon is a surface that is the boundary between light rays that are directed outwards and moving outwards and those directed outward but moving inward.

Contents

Apparent horizons are not invariant properties of spacetime, and in particular, they are distinct from event horizons. Within an apparent horizon, light does not move outward; this is in contrast with the event horizon. In a dynamical spacetime, there can be outgoing light rays exterior to an apparent horizon (but still interior to the event horizon). An apparent horizon is a local notion of the boundary of a black hole, whereas an event horizon is a global notion.

The notion of a horizon in general relativity is subtle and depends on fine distinctions.

Definition

The notion of an "apparent horizon" begins with the notion of a trapped null surface. A (compact, orientable, spacelike) surface always has two independent forward-in-time pointing, lightlike, normal directions. For example, a (spacelike) sphere in Minkowski space has lightlike vectors pointing inward and outward along the radial direction. In Euclidean space (i.e. flat and unaffected by gravitational effects), the inward-pointing, lightlike normal vectors converge, while the outward-pointing, lightlike normal vectors diverge. It can, however, happen that both inward-pointing and outward-pointing lightlike normal vectors converge. In such a case, the surface is called trapped. [1] The apparent horizon is the outermost of all trapped surfaces, also called the "marginally outer trapped surface" (MOTS).

Differences from the (absolute) event horizon

In the context of black holes, the term event horizon refers almost exclusively to the notion of the "absolute horizon". Much confusion seems to arise concerning the differences between an apparent horizon (AH) and an event horizon (EH). In general, the two need not be the same. For example, in the case of a perturbed black hole, the EH and the AH generally do not coincide as long as either horizon fluctuates.

Event horizons can, in principle, arise and evolve in exactly flat regions of spacetime, having no black hole inside, if a hollow spherically symmetric thin shell of matter is collapsing in a vacuum spacetime. The exterior of the shell is a portion of Schwarzschild space and the interior of the hollow shell is exactly flat Minkowski space. Bob Geroch has pointed out that if all the stars in the Milky Way gradually aggregate towards the Galactic Center while keeping their proportionate distances from each other, they will all fall within their joint Schwarzschild radius long before they are forced to collide. [2]

In the simple picture of stellar collapse leading to formation of a black hole, an event horizon forms before an apparent horizon. [3] As the black hole settles down, the two horizons approach each other, and asymptotically become the same surface. If the null curvature condition (where denotes the Ricci tensor and a null vector) is satisfied, then the AH is located inside the EH. [4]

Apparent horizons depend on the "slicing" of a spacetime. That is, the location and even existence of an apparent horizon depends on the way spacetime is divided into space and time. For example, it is possible to slice the Schwarzschild geometry in such a way that there is no apparent horizon, ever, despite the fact that there is certainly an event horizon. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In mathematical physics, Minkowski space combines inertial space and time manifolds with a non-inertial reference frame of space and time into a four-dimensional model relating a position to the field.

In general relativity, Eddington–Finkelstein coordinates are a pair of coordinate systems for a Schwarzschild geometry which are adapted to radial null geodesics. Null geodesics are the worldlines of photons; radial ones are those that are moving directly towards or away from the central mass. They are named for Arthur Stanley Eddington and David Finkelstein. Although they appear to have inspired the idea, neither ever wrote down these coordinates or the metric in these coordinates. Roger Penrose seems to have been the first to write down the null form but credits it to the above paper by Finkelstein, and, in his Adams Prize essay later that year, to Eddington and Finkelstein. Most influentially, Misner, Thorne and Wheeler, in their book Gravitation, refer to the null coordinates by that name.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

<span class="mw-page-title-main">Black hole thermodynamics</span> Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

In physics, spherically symmetric spacetimes are commonly used to obtain analytic and numerical solutions to Einstein's field equations in the presence of radially moving matter or energy. Because spherically symmetric spacetimes are by definition irrotational, they are not realistic models of black holes in nature. However, their metrics are considerably simpler than those of rotating spacetimes, making them much easier to analyze.

In general relativity, the metric tensor is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

A frame field in general relativity is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In general relativity, a black brane is a solution of the equations that generalizes a black hole solution but it is also extended—and translationally symmetric—in p additional spatial dimensions. That type of solution would be called a black p-brane.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

The concept of mass in general relativity (GR) is more subtle to define than the concept of mass in special relativity. In fact, general relativity does not offer a single definition of the term mass, but offers several different definitions that are applicable under different circumstances. Under some circumstances, the mass of a system in general relativity may not even be defined.

<span class="mw-page-title-main">Proper acceleration</span> Physical acceleration experienced by an object

In relativity theory, proper acceleration is the physical acceleration experienced by an object. It is thus acceleration relative to a free-fall, or inertial, observer who is momentarily at rest relative to the object being measured. Gravitation therefore does not cause proper acceleration, because the same gravity acts equally on the inertial observer. As a consequence, all inertial observers always have a proper acceleration of zero.

In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."

In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.

In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".

It was customary to represent black hole horizons via stationary solutions of field equations, i.e., solutions which admit a time-translational Killing vector field everywhere, not just in a small neighborhood of the black hole. While this simple idealization was natural as a starting point, it is overly restrictive. Physically, it should be sufficient to impose boundary conditions at the horizon which ensure only that the black hole itself is isolated. That is, it should suffice to demand only that the intrinsic geometry of the horizon be time independent, whereas the geometry outside may be dynamical and admit gravitational and other radiation.

Closed trapped surfaces are a concept used in black hole solutions of general relativity which describe the inner region of an event horizon. Roger Penrose defined the notion of closed trapped surfaces in 1965. A trapped surface is one where light is not moving away from the black hole. The boundary of the union of all trapped surfaces around a black hole is called an apparent horizon.

References

  1. Ivan Booth (2005). "Black hole boundaries". Canadian Journal of Physics. 83 (11): 1073–1099. arXiv: gr-qc/0508107 . Bibcode:2005CaJPh..83.1073B. doi:10.1139/p05-063. S2CID   119350115.
  2. Curiel, Erik (2019). "The many definitions of a black hole". Nature Astronomy. 3: 27–34. arXiv: 1808.01507 . Bibcode:2019NatAs...3...27C. doi:10.1038/s41550-018-0602-1. S2CID   119080734.
  3. S. W. Hawking & G. F. R. Ellis (1973). The large scale structure of space-time. Cambridge University Press. doi:10.1017/CBO9780511524646.
  4. V. Faraoni (2015). Cosmological and Black Hole Apparent Horizons. Springer Cham. doi:10.1007/978-3-319-19240-6.
  5. Wald, Robert M. & Iyer, Vivek (December 1991). "Trapped surfaces in the Schwarzschild geometry and cosmic censorship". Phys. Rev. D. American Physical Society. 44 (12): R3719–R3722. Bibcode:1991PhRvD..44.3719W. doi:10.1103/PhysRevD.44.R3719. PMID   10013882.
Listen to this article (4 minutes)
Sound-icon.svg
This audio file was created from a revision of this article dated 10 November 2018 (2018-11-10), and does not reflect subsequent edits.