Back-arc region

Last updated
A back-arc above a subduction zone Subduction-en.svg
A back-arc above a subduction zone

The back-arc region is the area behind a volcanic arc. [1] In island volcanic arcs, it consists of back-arc basins of oceanic crust with abyssal depths, which may be separated by remnant arcs, similar to island arcs. [1] In continental arcs, the back-arc region is part of the continental platform, either dry land (subaerial) or forming shallow marine basins. [1]

Contents

Formation

Back-arc deformation is a product of subduction at convergent plate tectonic boundaries. It initiates and evolves behind the volcanic arc on the overriding plate of a subduction zone. [2] The stresses responsible for the deformation in this region of a subduction zone result from a combination of processes. The absolute motion of the upper plate as it moves towards or away from the trench strongly contributes to deformation in the back-arc region. [2] Since the downgoing slab is partly anchored in the viscous layers of the mantle, and therefore its lateral movement is significantly slower than the surface plate, then any motion of the overriding plate will cause extensional or compressional stress in the back-arc region depending on the direction of motion. [2] In addition, mantle convection in the upper mantle wedge caused by the downward movement of the subducted slab causes stress in the upper plate and the high heat flow that characterizes back-arcs. [3] The pulling effect of the slab as it goes down into the mantle causes a rollback motion of the trench, which also applies stress on the back-arc region of the upper plate. [2] However, this last process has less of an impact on deformation compared to upper plate motion. [2]

Back-arcs can form on either oceanic crust or continental crust. In the case of oceanic crust, most back-arc regions are subjected to tensional stresses and thus develop a spreading center where new oceanic crust is formed. [4] The composition of this new crust is similar to mid-ocean ridge basalt (MORB), although it contains higher amounts of water. [4]

Back-arc extension vs. compression

The back-arc deformation may be either extensional or compressional. The overriding plate will shorten when its motion is directed towards the trench, resulting in a compression of the back-arc region. [5] This type of deformation is associated with a shallow dipping subducted slab. [5] Inversely, an overriding plate moving away from the trench will result in extension, and a back-arc basin will form. [5] This extensional deformation is associated with a steeply dipping slab. [5]

The extreme cases of these two types of back-arc deformation can be found in Chile and at the Marianas arc. The shallow dipping slab subducting beneath Chile at an angle of about 10–15° causes a compressional stress on the back-arc region behind the Andes. [6] On the other extreme, the slab going down into the mantle at the Marianas subduction zone is so steep it is nearly vertical. [6] This is the perfect example of an oceanic back-arc basin experiencing extensional forces. The Oriente in Ecuador (the eastern part of the country covered by rainforest) is also a good example of an extensional back-arc basin, this time in a continental setting. The continental crust in this area east of the Andes has been stretched out and covered by layers of sediments.

See also

Related Research Articles

<span class="mw-page-title-main">Oceanic trench</span> Long and narrow depressions of the sea floor

Oceanic trenches are prominent, long, narrow topographic depressions of the ocean floor. They are typically 50 to 100 kilometers wide and 3 to 4 km below the level of the surrounding oceanic floor, but can be thousands of kilometers in length. There are about 50,000 km (31,000 mi) of oceanic trenches worldwide, mostly around the Pacific Ocean, but also in the eastern Indian Ocean and a few other locations. The greatest ocean depth measured is in the Challenger Deep of the Mariana Trench, at a depth of 10,920 m (35,830 ft) below sea level.

<span class="mw-page-title-main">Subduction</span> A geological process at convergent tectonic plate boundaries where one plate moves under the other

Subduction is a geological process in which the oceanic lithosphere and some continental lithosphere is recycled into the Earth's mantle at convergent boundaries. Where the oceanic lithosphere of a tectonic plate converges with the less dense lithosphere of a second plate, the heavier plate dives beneath the second plate and sinks into the mantle. A region where this process occurs is known as a subduction zone, and its surface expression is known as an arc-trench complex. The process of subduction has created most of the Earth's continental crust. Rates of subduction are typically measured in centimeters per year, with rates of convergence as high as 11 cm/year.

Obduction is a geological process whereby denser oceanic crust is scraped off a descending ocean plate at a convergent plate boundary and thrust on top of an adjacent plate. When oceanic and continental plates converge, normally the denser oceanic crust sinks under the continental crust in the process of subduction. Obduction, which is less common, normally occurs in plate collisions at orogenic belts or back-arc basins.

In geology, the slab gap hypothesis is one of the explanations put forward to explain several instances of crustal extension that occur inland near former subduction zones.

<span class="mw-page-title-main">Convergent boundary</span> Region of active deformation between colliding tectonic plates

A convergent boundary is an area on Earth where two or more lithospheric plates collide. One plate eventually slides beneath the other, a process known as subduction. The subduction zone can be defined by a plane where many earthquakes occur, called the Wadati–Benioff zone. These collisions happen on scales of millions to tens of millions of years and can lead to volcanism, earthquakes, orogenesis, destruction of lithosphere, and deformation. Convergent boundaries occur between oceanic-oceanic lithosphere, oceanic-continental lithosphere, and continental-continental lithosphere. The geologic features related to convergent boundaries vary depending on crust types.

<span class="mw-page-title-main">Island arc</span> Arc-shaped archipelago formed by intense seismic activity of long chains of active volcanoes

Island arcs are long chains of active volcanoes with intense seismic activity found along convergent tectonic plate boundaries. Most island arcs originate on oceanic crust and have resulted from the descent of the lithosphere into the mantle along the subduction zone. They are the principal way by which continental growth is achieved.

<span class="mw-page-title-main">Forearc</span> The region between an oceanic trench and the associated volcanic arc

Forearc is a plate tectonic term referring to a region in a subduction zone between an oceanic trench and the associated volcanic arc. Forearc regions are present along convergent margins and eponymously form 'in front of' the volcanic arcs that are characteristic of convergent plate margins. A back-arc region is the companion region behind the volcanic arc.

<span class="mw-page-title-main">Volcanic arc</span> Chain of volcanoes formed above a subducting plate

A volcanic arc is a belt of volcanoes formed above a subducting oceanic tectonic plate, with the belt arranged in an arc shape as seen from above. Volcanic arcs typically parallel an oceanic trench, with the arc located further from the subducting plate than the trench. The oceanic plate is saturated with water, mostly in the form of hydrous minerals such as micas, amphiboles, and serpentines. As the oceanic plate is subducted, it is subjected to increasing pressure and temperature with increasing depth. The heat and pressure break down the hydrous minerals in the plate, releasing water into the overlying mantle. Volatiles such as water drastically lower the melting point of the mantle, causing some of the mantle to melt and form magma at depth under the overriding plate. The magma ascends to form an arc of volcanoes parallel to the subduction zone.

<span class="mw-page-title-main">Wadati–Benioff zone</span> Planar zone of seismicity corresponding with the down-going slab

A Wadati–Benioff zone is a planar zone of seismicity corresponding with the down-going slab in a subduction zone. Differential motion along the zone produces numerous earthquakes, the foci of which may be as deep as about 670 km (420 mi). The term was named for the two seismologists, Hugo Benioff of the California Institute of Technology and Kiyoo Wadati of the Japan Meteorological Agency, who independently discovered the zones.

<span class="mw-page-title-main">Back-arc basin</span> Submarine features associated with island arcs and subduction zones

A back-arc basin is a type of geologic basin, found at some convergent plate boundaries. Presently all back-arc basins are submarine features associated with island arcs and subduction zones, with many found in the western Pacific Ocean. Most of them result from tensional forces, caused by a process known as oceanic trench rollback, where a subduction zone moves towards the subducting plate. Back-arc basins were initially an unexpected phenomenon in plate tectonics, as convergent boundaries were expected to universally be zones of compression. However, in 1970, Dan Karig published a model of back-arc basins consistent with plate tectonics.

<span class="mw-page-title-main">Izu–Bonin–Mariana Arc</span> Convergent boundary in Micronesia

The Izu–Bonin–Mariana (IBM) arc system is a tectonic plate convergent boundary in Micronesia. The IBM arc system extends over 2800 km south from Tokyo, Japan, to beyond Guam, and includes the Izu Islands, the Bonin Islands, and the Mariana Islands; much more of the IBM arc system is submerged below sealevel. The IBM arc system lies along the eastern margin of the Philippine Sea Plate in the Western Pacific Ocean. It is the site of the deepest gash in Earth's solid surface, the Challenger Deep in the Mariana Trench.

Slab pull is a geophysical mechanism whereby the cooling and subsequent densifying of a subducting tectonic plate produces a downward force along the rest of the plate. In 1975 Forsyth and Uyeda used the inverse theory method to show that, of the many forces likely to be driving plate motion, slab pull was the strongest. Plate motion is partly driven by the weight of cold, dense plates sinking into the mantle at oceanic trenches. This force and slab suction account for almost all of the force driving plate tectonics. The ridge push at rifts contributes only 5 to 10%.

<span class="mw-page-title-main">Hellenic Trench</span> Long narrow depression bordering the Aegean Sea to the south

The Hellenic Trench (HT) is an oceanic trough located in the forearc of the Hellenic Arc, an arcuate archipelago on the southern margin of the Aegean Sea Plate, or Aegean Plate, also called Aegea, the basement of the Aegean Sea. The HT begins in the Ionian Sea near the mouth of the Gulf of Corinth and curves to the south, following the margin of the Aegean Sea. It passes close to the south shore of Crete and ends near the island of Rhodes just offshore Anatolia.

<span class="mw-page-title-main">Lau Basin</span> Oceanic basin in the South Pacific Ocean between Fiji and Tonga

The Lau Basin is a back-arc basin at the Australian-Pacific plate boundary. It is formed by the Pacific plate subducting under the Australian plate. The Tonga-Kermadec Ridge, a frontal arc, and the Lau-Colville Ridge, a remnant arc, sit to the eastern and western sides of the basin, respectively. The basin has a raised transition area to the south where it joins the Havre Trough.

<span class="mw-page-title-main">Flat slab subduction</span> Subduction characterized by a low subduction angle

Flat slab subduction is characterized by a low subduction angle beyond the seismogenic layer and a resumption of normal subduction far from the trench. A slab refers to the subducting lower plate. A broader definition of flat slab subduction includes any shallowly dipping lower plate, as in western Mexico. Flat slab subduction is associated with the pinching out of the asthenosphere, an inland migration of arc magmatism, and an eventual cessation of arc magmatism. The coupling of the flat slab to the upper plate is thought to change the style of deformation occurring on the upper plate's surface and form basement-cored uplifts like the Rocky Mountains. The flat slab also may hydrate the lower continental lithosphere and be involved in the formation of economically important ore deposits. During the subduction, a flat slab itself may deform or buckle, causing sedimentary hiatus in marine sediments on the slab. The failure of a flat slab is associated with ignimbritic volcanism and the reverse migration of arc volcanism. Multiple working hypotheses about the cause of flat slabs are subduction of thick, buoyant oceanic crust (15–20 km) and trench rollback accompanying a rapidly overriding upper plate and enhanced trench suction. The west coast of South America has two of the largest flat slab subduction zones. Flat slab subduction is occurring at 10% of subduction zones.

<span class="mw-page-title-main">Divergent double subduction</span> Special type of Tectonic process

Divergent double subduction, also called outward dipping double-sided subduction, is a special type of subduction process in which two parallel subduction zones with different directions are developed on the same oceanic plate. In conventional plate tectonics theory, an oceanic plate subducts under another plate and new oceanic crust is generated somewhere else, commonly along the other side of the same plates However, in divergent double subduction, the oceanic plate subducts on two sides. This results in the closure of ocean and arc–arc collision.

<span class="mw-page-title-main">Aleutian subduction zone</span> Convergence boundary between the North American Plate and the Pacific Plate

The Aleutian subduction zone is a 2,500 mi (4,000 km) long convergent boundary between the North American Plate and the Pacific Plate, that extends from the Alaska Range to the Kamchatka Peninsula. Here, the Pacific Plate is being subducted underneath the North American Plate and the rate of subduction changes from west to east from 7.5 to 5.1 cm per year. The Aleutian subduction zone includes two prominent features, the Aleutian Arc and the Aleutian Trench. The Aleutian Arc was created via volcanic eruptions from dehydration of the subducting slab at ~100 km depth. The Aleutian Trench is a narrow and deep morphology that occurs between the two converging plates as the subducting slab dives beneath the overriding plate.

<span class="mw-page-title-main">Oblique subduction</span> Tectonic process

Oblique subduction is a form of subduction for which the convergence direction differs from 90° to the plate boundary. Most convergent boundaries involve oblique subduction, particularly in the Ring of Fire including the Ryukyu, Aleutian, Central America and Chile subduction zones. In general, the obliquity angle is between 15° and 30°. Subduction zones with high obliquity angles include Sunda trench and Ryukyu arc.

<span class="mw-page-title-main">Chile Ridge</span> Submarine oceanic ridge in the Pacific Ocean

The Chile Ridge, also known as the Chile Rise, is a submarine oceanic ridge formed by the divergent plate boundary between the Nazca Plate and the Antarctic Plate. It extends from the triple junction of the Nazca, Pacific, and Antarctic plates to the Southern coast of Chile. The Chile Ridge is easy to recognize on the map, as the ridge is divided into several segmented fracture zones which are perpendicular to the ridge segments, showing an orthogonal shape toward the spreading direction. The total length of the ridge segments is about 550–600 km.

Magmatism along strike-slip faults is the process of rock melting, magma ascent and emplacement, associated with the tectonics and geometry of various strike-slip settings, most commonly occurring along transform boundaries at mid-ocean ridge spreading centres and at strike-slip systems parallel to oblique subduction zones. Strike-slip faults have a direct effect on magmatism. They can either induce magmatism, act as a conduit to magmatism and magmatic flow, or block magmatic flow. In contrast, magmatism can also directly impact on strike-slip faults by determining fault formation, propagation and slip. Both magma and strike-slip faults coexist and affect one another.

References

  1. 1 2 3 Moores, Eldridge M.; Twiss, Robert J. (1995). Tectonics. W. H. Freeman and Company. p. 157. ISBN   978-0-7167-2437-7.
  2. 1 2 3 4 5 Heuret, A., Lallemand, S. (March 2005), "Plate motions, slab dynamics and back-arc deformation", Physics of the Earth and Planetary Interiors, 149 (1–2): 31–51, Bibcode:2005PEPI..149...31H, doi:10.1016/j.pepi.2004.08.022 {{citation}}: CS1 maint: multiple names: authors list (link)
  3. Uyeda, S. (January 1982), "Subduction zones: An introduction to comparative subductology", Tectonophysics, 81 (3–4): 133–159, Bibcode:1982Tectp..81..133U, doi:10.1016/0040-1951(82)90126-3
  4. 1 2 Taylor, B., Martinez, F. (May 2003), "Back-arc basin basalt systematics", Earth and Planetary Science Letters, 210 (3–4): 481–497, Bibcode:2003E&PSL.210..481T, CiteSeerX   10.1.1.486.4485 , doi:10.1016/S0012-821X(03)00167-5 {{citation}}: CS1 maint: multiple names: authors list (link)
  5. 1 2 3 4 Heuret, A.; Funiciello, F.; Faccenna, C.; Lallemand, S. (April 2007), "Plate kinematics, slab shape and back-arc stress: A comparison between laboratory models and current subduction zones", Earth and Planetary Science Letters, 256 (3–4): 473–483, Bibcode:2007E&PSL.256..473H, doi:10.1016/j.epsl.2007.02.004
  6. 1 2 Uyeda, S.; Kanamori, H. (March 1979), "Back-arc opening and the mode of subduction" (PDF), Journal of Geophysical Research: Solid Earth, 84 (B3): 1049–1061, Bibcode:1979JGR....84.1049U, doi:10.1029/JB084iB03p01049