CONSERT

Last updated

CONSERT (COmet Nucleus Sounding Experiment by Radiowave Transmission) is a scientific experiment on board the European Space Agency's Rosetta mission, launched in 2004, to provide information about the deep interior of the comet 67P/Churyumov-Gerasimenko upon the probe's rendezvous with the comet in 2014. [1]

Contents

The CONSERT radar was to perform tomography of the nucleus by measuring electromagnetic wave propagation from the Philae lander and the Rosetta orbiter throughout the comet nucleus in order to determine its internal structures and to deduce information on its composition. [2] The related lander and orbiter electronics were provided by France and both antennas were constructed in Germany. The experiment was designed and built in France by Laboratoire de Planétologie de Grenoble (LPG now IPAG) and by Service d'Aéronomie in Paris (SA now LATMOS), in Germany by the Max Planck Institute for Solar System Research (MPS) in Göttingen. The Principal Investigator of CONSERT is Dr. Wlodek Kofman (IPAG), Director of Research at CNRS.

On 13 November 2014 the experiment unexpectedly provided information to locate Philae after it had bounced into an unknown place. [3]

Scientific objectives

The scientific objectives of the CONSERT experiment are the determination of the main dielectric properties and, through modelling, to set constraints on the cometary composition (materials, porosity, etc.), to detect large–size structures (several tens of meters) and stratification, to detect and characterise small–scale irregularities within the nucleus.

A detailed analysis of the radio–waves which have passed through all or parts of the nucleus will put real constraints on the materials and on inhomogeneities and will help to identify blocks, gaps or voids. From this information, scientists will attempt to answer some fundamental questions of cometary physics. How is the nucleus built up? Is it homogeneous, layered or composed of accreted blocks (cometesimals, boulders)? What is the nature of the refractory component? Is it chondritic as generally expected or does it contain inclusions of unexpected electromagnetic properties?

In more detail, the purpose of CONSERT experiment is to measure the following quantities: [2]

Basic principle of the CONSERT experiment

The basic principle of the experiment consists in using the electromagnetic propagation (90 MHz VHF radio) through the cometary interior.[ citation needed ] An electromagnetic wave–front propagates through the cometary nucleus at a smaller velocity than in free space and loses energy in the process. Both the change in velocity and the energy loss depend on the complex permittivity of the cometary materials. They also depend on the ratio of the wavelength used to the size of any inhomogeneities present. Thus, any signal that has propagated through the medium contains information concerning this medium. The change in velocity of the electromagnetic wave induced by propagation through the cometary material is calculable from the time taken by the wave to travel between the orbiter and the lander, while the loss of energy is deducible from the change in signal amplitude.

The orbiter will send a signal which will be picked up by the lander. As the orbiter moves along its orbit, the path between it and the lander will vary and so pass through differing parts of the comet. In addition, the rotation of the comet nucleus will also change the relative position of the lander and the orbiter. Hence, over several orbits, many different paths will have been obtained.

The lander communicated with the Rosetta orbiter again on 9 July 2015 and transmitted measurement data from the CONSERT instrument. [4]

Related Research Articles

<span class="mw-page-title-main">Comet</span> Natural object in space that releases gas

A comet is an icy, small Solar System body that warms and begins to release gases when passing close to the Sun, a process called outgassing. This produces an extended, gravitationally unbound atmosphere or coma surrounding the nucleus, and sometimes a tail of gas and dust gas blown out from the coma. These phenomena are due to the effects of solar radiation and the outstreaming solar wind plasma acting upon the nucleus of the comet. Comet nuclei range from a few hundred meters to tens of kilometers across and are composed of loose collections of ice, dust, and small rocky particles. The coma may be up to 15 times Earth's diameter, while the tail may stretch beyond one astronomical unit. If sufficiently close and bright, a comet may be seen from Earth without the aid of a telescope and can subtend an arc of up to 30° across the sky. Comets have been observed and recorded since ancient times by many cultures and religions.

<span class="mw-page-title-main">Luminiferous aether</span> Obsolete postulated medium for the propagation of light

Luminiferous aether or ether was the postulated medium for the propagation of light. It was invoked to explain the ability of the apparently wave-based light to propagate through empty space, something that waves should not be able to do. The assumption of a spatial plenum of luminiferous aether, rather than a spatial vacuum, provided the theoretical medium that was required by wave theories of light.

<span class="mw-page-title-main">Wave</span> Repeated oscillation around equilibrium

In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a traveling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero. Waves are often described by a wave equation or a one-way wave equation for single wave propagation in a defined direction.

Path loss, or path attenuation, is the reduction in power density (attenuation) of an electromagnetic wave as it propagates through space. Path loss is a major component in the analysis and design of the link budget of a telecommunication system.

The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.

<span class="mw-page-title-main">Transmission medium</span> Conduit for signal propagation

A transmission medium is a system or substance that can mediate the propagation of signals for the purposes of telecommunication. Signals are typically imposed on a wave of some kind suitable for the chosen medium. For example, data can modulate sound, and a transmission medium for sounds may be air, but solids and liquids may also act as the transmission medium. Vacuum or air constitutes a good transmission medium for electromagnetic waves such as light and radio waves. While a material substance is not required for electromagnetic waves to propagate, such waves are usually affected by the transmission media they pass through, for instance, by absorption or reflection or refraction at the interfaces between media. Technical devices can therefore be employed to transmit or guide waves. Thus, an optical fiber or a copper cable is used as transmission media.

<span class="mw-page-title-main">Waveguide</span> Structure that guides waves efficiently

A waveguide is a structure that guides waves by restricting the transmission of energy to one direction. Common types of waveguides include acoustic waveguides which direct sound, optical waveguides which direct light, and radio-frequency waveguides which direct electromagnetic waves other than light like radio waves.

<span class="mw-page-title-main">Radio wave</span> Type of electromagnetic radiation

Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1mm, which is shorter than the diameter of a grain of rice. At 30 Hz the corresponding wavelength is ~10,000 kilometers, which is longer than the radius of the Earth. Wavelength of a radio wave is inversely proportional to its frequency, because its velocity is constant. Like all electromagnetic waves, radio waves in a vacuum travel at the speed of light, and in the Earth's atmosphere at a slightly slower speed. Radio waves are generated by charged particles undergoing acceleration, such as time-varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects, and are part of the blackbody radiation emitted by all warm objects.

<i>Rosetta</i> (spacecraft) European orbiter sent to study a comet

Rosetta was a space probe built by the European Space Agency launched on 2 March 2004. Along with Philae, its lander module, Rosetta performed a detailed study of comet 67P/Churyumov–Gerasimenko (67P). During its journey to the comet, the spacecraft performed flybys of Earth, Mars, and the asteroids 21 Lutetia and 2867 Šteins. It was launched as the third cornerstone mission of the ESA's Horizon 2000 programme, after SOHO / Cluster and XMM-Newton.

<span class="mw-page-title-main">67P/Churyumov–Gerasimenko</span> Periodic contact binary comet

67P/Churyumov–Gerasimenko is a Jupiter-family comet, originally from the Kuiper belt, with a current orbital period of 6.45 years, a rotation period of approximately 12.4 hours and a maximum velocity of 135,000 km/h. Churyumov–Gerasimenko is approximately 4.3 by 4.1 km at its longest and widest dimensions. It was first observed on photographic plates in 1969 by Soviet astronomers Klim Ivanovych Churyumov and Svetlana Ivanovna Gerasimenko, after whom it is named. It most recently came to perihelion on 2 November 2021, and will next come to perihelion on 9 April 2028.

<i>Philae</i> (spacecraft) Robotic European Space Agency lander that accompanied the Rosetta spacecraft

Philae was a robotic European Space Agency lander that accompanied the Rosetta spacecraft until it separated to land on comet 67P/Churyumov–Gerasimenko, ten years and eight months after departing Earth. On 12 November 2014, Philae touched down on the comet, but it bounced when its anchoring harpoons failed to deploy and a thruster designed to hold the probe to the surface did not fire. After bouncing off the surface twice, Philae achieved the first-ever "soft" (nondestructive) landing on a comet nucleus, although the lander's final, uncontrolled touchdown left it in a non-optimal location and orientation.

Timeline of <i>Rosetta</i> (spacecraft)

Rosetta is a space probe designed to rendezvous with the comet 67P/Churyumov–Gerasimenko, perform flybys of two asteroids, and carry lander Philae until its landing on 67P. This page records a detailed timeline of this mission.

<span class="mw-page-title-main">Coma (comet)</span> Cloud of gas or a trail around a comet or asteroid

The coma is the nebulous envelope around the nucleus of a comet, formed when the comet passes near the Sun in its highly elliptical orbit. As the comet warms, parts of it sublimate; this gives a comet a diffuse appearance when viewed through telescopes and distinguishes it from stars. The word coma comes from the Greek κόμη (kómē), which means "hair" and is the origin of the word comet itself.

<span class="mw-page-title-main">Comet Rendezvous Asteroid Flyby</span> Cancelled NASA mission plan

The Comet Rendezvous Asteroid Flyby (CRAF) was a cancelled plan for a NASA-led exploratory mission designed by the Jet Propulsion Laboratory during the mid-to-late 1980s and early 1990s, that planned to send a spacecraft to encounter an asteroid, and then to rendezvous with a comet and fly alongside it for nearly three years. The project was eventually canceled when it went over budget; most of the money still left was redirected to its twin spacecraft, Cassini–Huygens, destined for Saturn, so it could survive Congressional budget cutbacks. Most of CRAF's scientific objectives were later accomplished by the smaller NASA spacecraft Stardust and Deep Impact, and by ESA's flagship Rosetta mission.

In optics, an optical medium is material through which light and other electromagnetic waves propagate. It is a form of transmission medium. The permittivity and permeability of the medium define how electromagnetic waves propagate in it.

Non-line-of-sight (NLOS) radio propagation occurs outside of the typical line-of-sight (LOS) between the transmitter and receiver, such as in ground reflections. Near-line-of-sight conditions refer to partial obstruction by a physical object present in the innermost Fresnel zone.

<span class="mw-page-title-main">Comet nucleus</span> Central part of a comet

The nucleus is the solid, central part of a comet, formerly termed a dirty snowball or an icy dirtball. A cometary nucleus is composed of rock, dust, and frozen gases. When heated by the Sun, the gases sublime and produce an atmosphere surrounding the nucleus known as the coma. The force exerted on the coma by the Sun's radiation pressure and solar wind cause an enormous tail to form, which points away from the Sun. A typical comet nucleus has an albedo of 0.04. This is blacker than coal, and may be caused by a covering of dust.

The word electricity refers generally to the movement of electrons through a conductor in the presence of a potential difference or an electric field. The speed of this flow has multiple meanings. In everyday electrical and electronic devices, the signals travel as electromagnetic waves typically at 50%–99% of the speed of light in vacuum, while the electrons themselves move much more slowly; see drift velocity and electron mobility.

The Earth–ionosphere waveguide refers to the phenomenon in which certain radio waves can propagate in the space between the ground and the boundary of the ionosphere. Because the ionosphere contains charged particles, it can behave as a conductor. The earth operates as a ground plane, and the resulting cavity behaves as a large waveguide.

<span class="mw-page-title-main">Metamaterial cloaking</span> Shielding an object from view using materials made to redirect light

Metamaterial cloaking is the usage of metamaterials in an invisibility cloak. This is accomplished by manipulating the paths traversed by light through a novel optical material. Metamaterials direct and control the propagation and transmission of specified parts of the light spectrum and demonstrate the potential to render an object seemingly invisible. Metamaterial cloaking, based on transformation optics, describes the process of shielding something from view by controlling electromagnetic radiation. Objects in the defined location are still present, but incident waves are guided around them without being affected by the object itself.

References

  1. "PHILAE". NASA, National Space Science Data Center. Archived from the original on 20 September 2008. Retrieved 27 August 2014.
  2. 1 2 Kofman, Dr. Wlodek (Principal Investigator). "Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT)". NASA, National Space Science Data Center . Retrieved 27 August 2014.
  3. "Living with a comet: a CONSERT team perspective | Rosetta". rosetta.jpl.nasa.gov. Archived from the original on 2019-08-24. Retrieved 2019-08-24.
  4. "Philae Contacted and Successfully Executes Commands". DLR Press Release. SpaceRef. 11 July 2015. Retrieved 2015-07-11.

PD-icon.svg This article incorporates public domain material from Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT). National Aeronautics and Space Administration.