Cameron's Line

Last updated

Cameron's Line is an Ordovician suture fault in the northeast United States which formed as part of the continental collision known as the Taconic orogeny around 450 mya. Named after Eugene N. Cameron, [1] who first described it in the 1950s, it ties together the North American continental craton, the prehistoric Taconic Island volcanic arc, and the bottom of the ancient Iapetus Ocean. [2]

Contents

Location

Cameron's Line winds southward out of New England through Western Connecticut. It has been identified in western Connecticut near Ridgefield before it heads into the Bronx, along the East River in Manhattan, through New York Bay, Staten Island and into New Jersey. [3]

Geology

The basement rocks of the Manhattan Formation located on the western side of Cameron's line are metamorphosed sedimentary rocks and can be thought of as the remnants of the edge of the North American continent from 1 billion years ago. They were formed in roughly this location (autochthonous) and have been tectonically stable over a large period of time. Through New England, generally, the rocks to the west of Cameron's line are the remnants of an enormous mountain range (the Grenville orogeny), sometimes called the 'crystalline Appalachians,' which once stretched from Newfoundland to Mexico, the local remnants of which are exposed and create the Housatonic Highlands, the New Jersey Highlands and the Manhattan prong (much of the Bronx). [4]

In general, to the east of the line has allochthonous rocks formed elsewhere, which have experienced great tectonic movement in a westward direction on top of the underlying bedrock. In other words, beginning around 450 million years ago an ocean similar to the Atlantic began to shrink and as it did the North American continent began to collide with island chains which accreted at the edge of the continent and formed the land of what we now call New England. [4] The major exceptions to this directionality are the most southerly remnants of these ancient collisions, the Serpentinite outcrops that form Hoboken, New Jersey, and Todt Hill, Staten Island, which actually lie to the west of Cameron's line because it makes a U-turn.

Near New York City the term 'line' becomes less applicable, as the multiple collisions - including a much later collision with Africa that created the supercontinent Pangaea Alleghanian orogeny- have warped and folded the boundary into a complex three dimensional shape which was later broken during the rifting process that created the Atlantic Ocean and Newark Basin that split up the supercontinent (this rifting also created the Palisades, which were created by an intrusion of magma from the Earth's mantle). Generally the line creates a hook that generally travels through the Bronx, the western part of Manhattan and down into Staten Island then immediately returns north through Hudson County, New Jersey and eastern Manhattan. [5]

The position of the line in New York City and especially in Manhattan is subject to much debate because of the complex folding patterns in that area. Due to the violent nature of the Taconic and subsequent Alleghenian Orogeny, the line has been folded and eroded several times. [6] The material in the line is described as "highly laminated, migmatized, complexly folded- and annealed zones of commingled mylonitic rocks". [7]

Related Research Articles

<span class="mw-page-title-main">Orogeny</span> The formation of mountain ranges

Orogeny is a mountain-building process that takes place at a convergent plate margin when plate motion compresses the margin. An orogenic belt or orogen develops as the compressed plate crumples and is uplifted to form one or more mountain ranges. This involves a series of geological processes collectively called orogenesis. These include both structural deformation of existing continental crust and the creation of new continental crust through volcanism. Magma rising in the orogen carries less dense material upwards while leaving more dense material behind, resulting in compositional differentiation of Earth's lithosphere. A synorogenic process or event is one that occurs during an orogeny.

<span class="mw-page-title-main">Appalachian Mountains</span> Mountain range in eastern North America

The Appalachian Mountains, often called the Appalachians, are a mountain range in eastern to northeastern North America. Here, the term "Appalachian" refers to several different regions associated with the mountain range, and its surrounding terrain. The general definition used is one followed by the US Geological Survey and the Geologic Survey of Canada to describe the respective countries' physiographic regions. The US uses the term Appalachian Highlands and Canada uses the term Appalachian Uplands..

<span class="mw-page-title-main">Geology of the Appalachians</span> Geologic description of the Appalachian Mountains

The geology of the Appalachians dates back more than 1.1 billion years to the Mesoproterozoic era when two continental cratons collided to form the supercontinent Rodinia, 500 million years prior to the later development of the range during the formation of the supercontinent Pangea. The rocks exposed in today's Appalachian Mountains reveal elongate belts of folded and thrust faulted marine sedimentary rocks, volcanic rocks and slivers of ancient ocean floor – strong evidence that these rocks were deformed during plate collision. The birth of the Appalachian ranges marks the first of several mountain building plate collisions that culminated in the construction of the supercontinent Pangea with the Appalachians and neighboring Anti-Atlas mountains near the center. These mountain ranges likely once reached elevations similar to those of the Alps and the Rocky Mountains before they were eroded.

<span class="mw-page-title-main">Avalonia</span> Microcontinent in the Paleozoic era named for the Avalon Peninsula in Newfoundland

Avalonia was a microcontinent in the Paleozoic era. Crustal fragments of this former microcontinent underlie south-west Great Britain, southern Ireland, and the eastern coast of North America. It is the source of many of the older rocks of Western Europe, Atlantic Canada, and parts of the coastal United States. Avalonia is named for the Avalon Peninsula in Newfoundland.

<span class="mw-page-title-main">Alleghanian orogeny</span> Mountain-forming event that formed the Appalachian and Allegheny Mountains

The Alleghanian orogeny or Appalachian orogeny is one of the geological mountain-forming events that formed the Appalachian Mountains and Allegheny Mountains. The term and spelling Alleghany orogeny was originally proposed by H.P. Woodward in 1957.

<span class="mw-page-title-main">Taconic orogeny</span> Mountain-building period that affected most of New England

The Taconic orogeny was a mountain building period that ended 440 million years ago and affected most of modern-day New England. A great mountain chain formed from eastern Canada down through what is now the Piedmont of the East coast of the United States. As the mountain chain eroded in the Silurian and Devonian periods, sediments from the mountain chain spread throughout the present-day Appalachians and midcontinental North America.

<span class="mw-page-title-main">Caledonian orogeny</span> Mountain building event caused by the collision of Laurentia, Baltica and Avalonia

The Caledonian orogeny was a mountain-building era recorded in the northern parts of the British Isles, the Scandinavian Mountains, Svalbard, eastern Greenland and parts of north-central Europe. The Caledonian orogeny encompasses events that occurred from the Ordovician to Early Devonian, roughly 490–390 million years ago (Ma). It was caused by the closure of the Iapetus Ocean when the continents and terranes of Laurentia, Baltica and Avalonia collided.

<span class="mw-page-title-main">Grenville orogeny</span> Mesoproterozoic mountain-building event

The Grenville orogeny was a long-lived Mesoproterozoic mountain-building event associated with the assembly of the supercontinent Rodinia. Its record is a prominent orogenic belt which spans a significant portion of the North American continent, from Labrador to Mexico, as well as to Scotland.

The Penokean orogeny was a mountain-building episode that occurred in the early Proterozoic about 1.86 to 1.83 billion years ago, in the area of Lake Superior, North America. The core of this orogeny, the Churchill Craton, is composed of terranes derived from the 1.86–1.81 Ga collision between the Superior and North Atlantic cratons. The orogeny resulted in the formation of the Nena and Arctica continents, which later merged with other continents to form the Columbia supercontinent. The name was first proposed by Blackwelder 1914 in reference to what is known as the Penokee Range, sometimes incorrectly called the Gogebic Range, in northern Michigan and Wisconsin.

<span class="mw-page-title-main">Geology of Georgia (U.S. state)</span> Overview of the geology of the U.S. state of Georgia

The U.S. state of Georgia is commonly divided into four geologic regions that influence the location of the state's four traditional physiographic regions. The four geologic regions include the Appalachian foreland, Blue Ridge, Piedmont, and Coastal Plain. These four geologic regions commonly share names with and typically overlap the four physiographic regions of the state: the Appalachian Plateau and adjacent Valley and Ridge; the Blue Ridge; the Piedmont and the Coastal Plain.

<span class="mw-page-title-main">Geology of Pennsylvania</span> Overview of the geology of the U.S. state of Pennsylvania

The Geology of Pennsylvania consists of six distinct physiographic provinces, three of which are subdivided into different sections. Each province has its own economic advantages and geologic hazards and plays an important role in shaping everyday life in the state. From the southeast corner to the northwest corner of the state, the include: the Atlantic Plain Province province, the Piedmont Province, the New England Province, the Ridge and Valley Province, the Appalachain Province, and the Central Lowlands Province.

<span class="mw-page-title-main">Geological history of Earth</span> The sequence of major geological events in Earths past

The geological history of the Earth follows the major geological events in Earth's past based on the geological time scale, a system of chronological measurement based on the study of the planet's rock layers (stratigraphy). Earth formed about 4.54 billion years ago by accretion from the solar nebula, a disk-shaped mass of dust and gas left over from the formation of the Sun, which also created the rest of the Solar System.

<span class="mw-page-title-main">Laurentia</span> A large continental craton that forms the ancient geological core of the North American continent

Laurentia or the North American Craton is a large continental craton that forms the ancient geological core of North America. Many times in its past, Laurentia has been a separate continent, as it is now in the form of North America, although originally it also included the cratonic areas of Greenland and also the northwestern part of Scotland, known as the Hebridean Terrane. During other times in its past, Laurentia has been part of larger continents and supercontinents and itself consists of many smaller terranes assembled on a network of Early Proterozoic orogenic belts. Small microcontinents and oceanic islands collided with and sutured onto the ever-growing Laurentia, and together formed the stable Precambrian craton seen today.

<span class="mw-page-title-main">Iapetus Suture</span> Ancient geological fault

The Iapetus Suture is one of several major geological faults caused by the collision of several ancient land masses forming a suture. It represents in part the remains of what was once the Iapetus Ocean. Iapetus was the father of Atlas in Greek mythology, making his an appropriate name for what used to be called the 'Proto-Atlantic Ocean'. When the Atlantic Ocean opened, in the Cretaceous period, it took a slightly different line from that of the Iapetus suture, with some originally Laurentian rocks being left behind in north-west Europe and other, Avalonian, rocks remaining as part of Newfoundland.

<span class="mw-page-title-main">Ramapo Fault</span>

The Ramapo Fault zone is a system of faults between the northern Appalachian Mountains and Piedmont areas to the east. Spanning more than 185 miles (298 km) in New York, New Jersey, and Pennsylvania, it is perhaps the best known fault zone in the Mid-Atlantic region, and some small earthquakes have been known to occur in its vicinity. Recently, public knowledge about the fault has increased, especially after the 1970s, when the fault's proximity to the Indian Point nuclear plant in New York was noted.

<span class="mw-page-title-main">Geology of Massachusetts</span>

The geology of Massachusetts includes numerous units of volcanic, intrusive igneous, metamorphic and sedimentary rocks formed within the last 1.2 billion years. The oldest formations are gneiss rocks in the Berkshires, which were metamorphosed from older rocks during the Proterozoic Grenville orogeny as the proto-North American continent Laurentia collided against proto-South America. Throughout the Paleozoic, overlapping the rapid diversification of multi-cellular life, a series of six island arcs collided with the Laurentian continental margin. Also termed continental terranes, these sections of continental rock typically formed offshore or onshore of the proto-African continent Gondwana and in many cases had experienced volcanic events and faulting before joining the Laurentian continent. These sequential collisions metamorphosed new rocks from sediments, created uplands and faults and resulted in widespread volcanic activity. Simultaneously, the collisions raised the Appalachian Mountains to the height of the current day Himalayas.

<span class="mw-page-title-main">Geology of Colorado</span> Geology of the U.S. State of Colorado

The bedrock under the U.S. State of Colorado was assembled from island arcs accreted onto the edge of the ancient Wyoming Craton. The Sonoma orogeny uplifted the ancestral Rocky Mountains in parallel with the diversification of multicellular life. Shallow seas covered the regions, followed by the uplift current Rocky Mountains and intense volcanic activity. Colorado has thick sedimentary sequences with oil, gas and coal deposits, as well as base metals and other minerals.

<span class="mw-page-title-main">Geology of New York (state)</span> Overview of the geology of the U.S. state of New York

The geology of the State of New York is made up of ancient Precambrian crystalline basement rock, forming the Adirondack Mountains and the bedrock of much of the state. These rocks experienced numerous deformations during mountain building events and much of the region was flooded by shallow seas depositing thick sequences of sedimentary rock during the Paleozoic. Fewer rocks have deposited since the Mesozoic as several kilometers of rock have eroded into the continental shelf and Atlantic coastal plain, although volcanic and sedimentary rocks in the Newark Basin are a prominent fossil-bearing feature near New York City from the Mesozoic rifting of the supercontinent Pangea.

The Grampian orogeny was an orogeny mountain building event which affected Scotland in the middle of the Ordovician. At the time, Scotland was part of proto-North American continent Laurentia.

References

  1. JOHN M. GUILBERT. "Memorial to Eugene N. Cameron 1910–1999" (PDF). Geosociety.org. Archived (PDF) from the original on February 1, 2022. Retrieved March 7, 2022.
  2. Schneider, Daniel B. (August 22, 1999). "F.Y.I." The New York Times . Archived from the original on March 4, 2016. Retrieved May 1, 2010.
  3. "The Highlands Province". United States Geological Survey. July 22, 2003. Archived from the original on July 22, 2011. Retrieved May 1, 2010.
  4. 1 2 "Geology of the New York City Region". 3dparks.wr.usgs.gov. Archived from the original on February 2, 2017. Retrieved January 23, 2017.
  5. "Pleistocene Geology of Long Island's North Shore - Sanders and Merguerian 1991b". Geo.sunysb.edu. Archived from the original on June 19, 2015. Retrieved January 23, 2017.
  6. Merguerian, Charles; Merguerian, Mickey (2004). "Geology of Central Park – From Rocks to Ice" (PDF). Stony Brook University (SUNY) Department of Geosciences. Archived (PDF) from the original on October 9, 2022. Retrieved April 15, 2019.
  7. Fuller, Tyrand; Lesley Short; Charles Merguerian (1999). "TRACING THE ST. NICHOLAS THRUST AND CAMERON'S LINE THROUGH THE BRONX, NYC" (PDF). Hofstra University. Archived (PDF) from the original on July 22, 2010. Retrieved May 6, 2010.