Cantilever bridge

Last updated
Cantilever bridge
Pierre Pflimlin UC AdjAndCrop.jpg
The Pierre Pflimlin Bridge is a balanced cantilever made of concrete, shown here under construction.
Ancestor Beam bridge, truss bridge
RelatedNone
Descendant Swing bridge
Carries Pedestrians, automobiles, trucks, light rail, heavy rail
Span rangeMedium
Material Iron, structural steel, prestressed concrete
MovableNo
Design effortMedium
Falsework requiredVery little to none

A cantilever bridge is a bridge built using structures that project horizontally into space, supported on only one end (called cantilevers). For small footbridges, the cantilevers may be simple beams; however, large cantilever bridges designed to handle road or rail traffic use trusses built from structural steel, or box girders built from prestressed concrete.

Contents

The steel truss cantilever bridge was a major engineering breakthrough when first put into practice, as it can span distances of over 1,500 feet (460 m), and can be more easily constructed at difficult crossings by virtue of using little or no falsework.

Origins

The original style of cantilever bridge Tibetan log bridge.JPG
The original style of cantilever bridge

Engineers in the 19th century understood that a bridge that was continuous across multiple supports would distribute the loads among them. This would result in lower stresses in the girder or truss and meant that longer spans could be built. [1] :57,190 Several 19th-century engineers patented continuous bridges with hinge points mid-span. [2] :75,79 The use of a hinge in the multi-span system presented the advantages of a statically determinate system [3] and of a bridge that could handle differential settlement of the foundations. [1] :190 Engineers could more easily calculate the forces and stresses with a hinge in the girder.

Heinrich Gerber was one of the engineers to obtain a patent for a hinged girder (1866) and is recognized as the first to build one. [2] :79 The Hassfurt Bridge over the Main river in Germany with a central span of 124 feet (38 metres) was completed in 1867 and is recognized as the first modern cantilever bridge. [3] :par. 2

The structural principles of the suspended span cantilever bridge Cantilever bridge human model.jpg
The structural principles of the suspended span cantilever bridge

The High Bridge of Kentucky by C. Shaler Smith (1877), the Niagara Cantilever Bridge by Charles Conrad Schneider (1883) and the Poughkeepsie Bridge by John Francis O'Rourke and Pomeroy P. Dickinson (1889) were all important early uses of the cantilever design. [3] :par. 3,5 The Kentucky River Bridge spanned a gorge that was 275 feet (84 metres) deep and took full advantage of the fact that falsework, or temporary support, is not needed for the main span of a cantilever bridge. [3] :par. 3

The Forth Bridge is a notable example of an early cantilever bridge. This bridge held the record for longest span in the world for twenty-nine years until it was surpassed by the Quebec Bridge. The engineers responsible for the bridge, Sir Benjamin Baker and Sir John Fowler, demonstrated the structural principles of the suspended span cantilever by sitting in chairs and supporting their colleague, Kaichi Watanabe, in between them, using just their arms and wooden poles. The suspended span, where Watanabe sits, is in the center. The wooden poles resist the compression of the lower chord, while the outstretched arms support the tension of the upper chord. The placement of the brick counterweights demonstrates the action of the outer foundations. [3] :par. 6

Function

Cantilever Bridge.—A structure at least one portion of which acts as an anchorage for sustaining another portion which extends beyond the supporting pier.

John Alexander Low Waddell, Bridge Engineering [4]

A simple cantilever span is formed by two cantilever arms extending from opposite sides of an obstacle to be crossed, meeting at the center. In a common variant, the suspended span, the cantilever arms do not meet in the center; instead, they support a central truss bridge which rests on the ends of the cantilever arms. The suspended span may be built off-site and lifted into place, or constructed in place using special travelling supports.

A diagram of the parts of the John P. Grace Memorial Bridge CooperRiverBridge.svg
A diagram of the parts of the John P. Grace Memorial Bridge

A common way to construct steel truss and prestressed concrete cantilever spans is to counterbalance each cantilever arm with another cantilever arm projecting the opposite direction, forming a balanced cantilever; when they attach to a solid foundation, the counterbalancing arms are called anchor arms. Thus, in a bridge built on two foundation piers, there are four cantilever arms: two which span the obstacle, and two anchor arms that extend away from the obstacle. Because of the need for more strength at the balanced cantilever's supports, the bridge superstructure often[ citation needed ] takes the form of towers above the foundation piers. The Commodore Barry Bridge is an example of this type of cantilever bridge.

Steel truss cantilevers support loads by tension of the upper members and compression of the lower ones. Commonly, the structure distributes the tension via the anchor arms to the outermost supports, while the compression is carried to the foundations beneath the central towers. Many truss cantilever bridges use pinned joints and are therefore statically determinate with no members carrying mixed loads.

Prestressed concrete balanced cantilever bridges are often built using segmental construction.

Construction methods

Some steel arch bridges (such as the Navajo Bridge) are built using pure cantilever spans from each side, with neither falsework below nor temporary supporting towers and cables above. These are then joined with a pin, usually after forcing the union point apart, and when jacks are removed and the bridge decking is added the bridge becomes a truss arch bridge. Such unsupported construction is only possible where appropriate rock is available to support the tension in the upper chord of the span during construction, usually limiting this method to the spanning of narrow canyons.

The old eastern span of the San Francisco-Oakland Bay Bridge, pictured in August 2014, is deconstructed in an order nearly reverse that of its construction. Similar temporary supports were used under each anchor arm during the bridge's construction. SFOBB-OldEastSpanDismantleCropped.png
The old eastern span of the San Francisco–Oakland Bay Bridge, pictured in August 2014, is deconstructed in an order nearly reverse that of its construction. Similar temporary supports were used under each anchor arm during the bridge's construction.

List by length

World's longest cantilever bridges (by longest span): [5]

  1. Quebec Bridge (Quebec, Canada, 1919) 1,800 feet (549 m)
  2. Forth Bridge (Firth of Forth, Scotland, 1890) 2 x 1,710 feet (521 m)
  3. Minato Bridge (Osaka, Japan, 1973) 1,673 feet (510 m)
  4. Commodore Barry Bridge (Chester, Pennsylvania, US, 1974) 1,644 feet (501 m)
  5. Crescent City Connection (dual spans) (New Orleans, Louisiana, US, 1958 and 1988) 1,575 feet (480 m)
  6. Howrah Bridge (Kolkata, West Bengal, India, 1943) 1,500 feet (457 m)
  7. Gramercy Bridge (Gramercy, Louisiana, US, 1995) 1,460 feet (445 m)
  8. Tokyo Gate Bridge (Tokyo, Japan, 2012) 1,443 feet (440 m)
  9. J. C. Van Horne Bridge (Campbellton, New Brunswick & Pointe-à-la-Croix, Quebec, Canada, 1961) 1,247 feet (380 m)
  10. Horace Wilkinson Bridge (Baton Rouge, Louisiana, US, 1968) 1,235 feet (376 m)
  11. Tappan Zee Bridge (South Nyack, New York & Tarrytown, New York, US, 1955–2017) 1,212 feet (369 m)
  12. Lewis and Clark Bridge (Longview, Washington & Rainier, Oregon, US, 1930) 1,200 feet (366 m)

Examples

Related Research Articles

<span class="mw-page-title-main">Suspension bridge</span> Type of bridge

A suspension bridge is a type of bridge in which the deck is hung below suspension cables on vertical suspenders. The first modern examples of this type of bridge were built in the early 1800s. Simple suspension bridges, which lack vertical suspenders, have a long history in many mountainous parts of the world.

<span class="mw-page-title-main">Cable-stayed bridge</span> Type of bridge with cables directly from towers

A cable-stayed bridge has one or more towers, from which cables support the bridge deck. A distinctive feature are the cables or stays, which run directly from the tower to the deck, normally forming a fan-like pattern or a series of parallel lines. This is in contrast to the modern suspension bridge, where the cables supporting the deck are suspended vertically from the main cable, anchored at both ends of the bridge and running between the towers. The cable-stayed bridge is optimal for spans longer than cantilever bridges and shorter than suspension bridges. This is the range within which cantilever bridges would rapidly grow heavier, and suspension bridge cabling would be more costly.

<span class="mw-page-title-main">Arch bridge</span> Bridge with arch-shaped supports

An arch bridge is a bridge with abutments at each end shaped as a curved arch. Arch bridges work by transferring the weight of the bridge and its loads partially into a horizontal thrust restrained by the abutments at either side. A viaduct may be made from a series of arches, although other more economical structures are typically used today.

<span class="mw-page-title-main">Truss bridge</span> Bridge whose load-bearing superstructure is composed of a truss

A truss bridge is a bridge whose load-bearing superstructure is composed of a truss, a structure of connected elements, usually forming triangular units. The connected elements, typically straight, may be stressed from tension, compression, or sometimes both in response to dynamic loads. There are several types of truss bridges, including some with simple designs that were among the first bridges designed in the 19th and early 20th centuries. A truss bridge is economical to construct primarily because it uses materials efficiently.

<span class="mw-page-title-main">Beam bridge</span> Type of bridge

Beam bridges are the simplest structural forms for bridge spans supported by an abutment or pier at each end. No moments are transferred throughout the support, hence their structural type is known as simply supported.

<span class="mw-page-title-main">Howrah Bridge</span> Steel bridge in Kolkata, India

The Howrah Bridge is a balanced steel bridge over the Hooghly River in West Bengal, India. Commissioned in 1943, the bridge was originally named the New Howrah Bridge, because it replaced a pontoon bridge at the same location linking the twin cities of Howrah and Kolkata, which are located at the opposite banks of each other. On 14 June 1965, it was renamed Rabindra Setu after the Bengali poet Rabindranath Tagore, who was the first Indian and Asian Nobel laureate. It is still popularly known as the Howrah Bridge.

<span class="mw-page-title-main">Eastern span replacement of the San Francisco–Oakland Bay Bridge</span> Seismic stabilization megaproject in California (2002–2013)

The eastern span replacement of the San Francisco–Oakland Bay Bridge was a construction project to replace a seismically unsound portion of the Bay Bridge with a new self-anchored suspension bridge (SAS) and a pair of viaducts. The bridge is in the U.S. state of California and crosses the San Francisco Bay between Yerba Buena Island and Oakland. The span replacement took place between 2002 and 2013, and is the most expensive public works project in California history, with a final price tag of $6.5 billion, a 2,500% increase from the original estimate of $250 million, which was an initial estimate for a seismic retrofit of the span, not the full span replacement ultimately completed. Originally scheduled to open in 2007, several problems delayed the opening until September 2, 2013. With a width of 258.33 ft (78.74 m), comprising 10 general-purpose lanes, it is the world's widest bridge according to Guinness World Records.

<span class="mw-page-title-main">Niagara Cantilever Bridge</span> Bridge in New York, and Niagara Falls

The Niagara Cantilever Bridge or Michigan Central Railway Cantilever Bridge was a cantilever bridge across the Niagara Gorge. An international railway-only bridge between Canada and the United States, it connected Niagara Falls, New York, and Niagara Falls, Ontario, located just south of the Whirlpool Bridge, and opened to traffic in 1883, it was replaced by the Michigan Central Railway Steel Arch Bridge in 1925.

<span class="mw-page-title-main">Roberto Clemente Bridge</span> Bridge in Pittsburgh, Pennsylvania, United States

The Roberto Clemente Bridge, also known as the Sixth Street Bridge, spans the Allegheny River in downtown Pittsburgh, Pennsylvania, United States.

<span class="mw-page-title-main">Girder</span> Support beam used in construction

A girder is a beam used in construction. It is the main horizontal support of a structure which supports smaller beams. Girders often have an I-beam cross section composed of two load-bearing flanges separated by a stabilizing web, but may also have a box shape, Z shape, or other forms. Girders are commonly used to build bridges.

<span class="mw-page-title-main">Segmental bridge</span> Structure meant to span obstacles, assembled one piece at a time

A segmental bridge is a bridge built in short sections, i.e., one piece at a time, as opposed to traditional methods that build a bridge in very large sections. The bridge is made of concrete that is either cast-in-place or precast concrete.

<span class="mw-page-title-main">Tied-arch bridge</span> Type of bridge

A tied-arch bridge is an arch bridge in which the outward-directed horizontal forces of the arch(es) are borne as tension by a chord tying the arch ends rather than by the ground or the bridge foundations. This strengthened chord may be the deck structure itself or consist of separate, independent tie-rods.

<span class="mw-page-title-main">Box girder</span> Type of girder

A box girder or tubular girder is a girder that forms an enclosed tube with multiple walls, as opposed to an I- or H-beam. Originally constructed of wrought iron joined by riveting, they are now made of rolled or welded steel, aluminium extrusions or prestressed concrete.

This is an alphabetical list of articles pertaining specifically to structural engineering. For a broad overview of engineering, please see List of engineering topics. For biographies please see List of engineers.

<span class="mw-page-title-main">Arch Bridge (Bellows Falls)</span> Bridge in Vermont to North Walpole, New Hampshire

The Bellows Falls Arch Bridge was a three-hinged steel through arch bridge over the Connecticut River between Bellows Falls, Vermont and North Walpole, New Hampshire. It was structurally significant as the longest arch bridge in the United States when it was completed in 1905.

<span class="mw-page-title-main">Godavari Arch Bridge</span> Bridge in Rajahmundry, India

The Godavari Arch Bridge is a bowstring-girder bridge that spans the Godavari River in Rajahmundry, India. It is the latest of the three bridges that span the Godavari river at Rajahmundry. The Havelock Bridge being the earliest, was built in 1897, and having served its full utility, was decommissioned in 1997. The second bridge known as the Godavari Bridge is a truss bridge and is India's third longest road-cum-rail bridge crossing a water body.

<span class="mw-page-title-main">Patton Bridge (Auburn, Washington)</span> United States historic place

Patton Bridge is a bridge located in Auburn, Washington listed on the National Register of Historic Places. The bridge spans the Green River near metropolitan Auburn, Washington. It was designed by bridge engineer and designer Homer M. Hadley. The combination of concrete and steel box girders employed in the bridge's represents a variation of the box girder bridge style. The Patton Bridge was the only structure built between 1941 and 1950, which exhibits this innovative modification of the box girder design.

The Sharavati Bridge is a railway bridge, south of Honnavar, in the state of Karnataka, India, completed in 1994. It carries the Konkan Railway over the Sharavati river.

<span class="mw-page-title-main">Forth Bridge</span> Railway bridge over the Firth of Forth in Scotland

The Forth Bridge is a cantilever railway bridge across the Firth of Forth in the east of Scotland, 9 miles west of central Edinburgh. Completed in 1890, it is considered a symbol of Scotland, and is a UNESCO World Heritage Site. It was designed by English engineers Sir John Fowler and Sir Benjamin Baker. It is sometimes referred to as the Forth Rail Bridge, although this is not its official name.

<span class="mw-page-title-main">Launching gantry</span>

A launching gantry is a special-purpose mobile gantry crane used in bridge construction, specifically segmental bridges that use precast box girder bridge segments or precast girders in highway and high-speed rail bridge construction projects. The launching gantry is used to lift and support bridge segments or girders as they are placed while being supported by the bridge piers instead of the ground.

References

  1. 1 2 DuBois, Augustus Jay (1902). The Mechanics of Engineering. New York: John Wiley & Sons. Retrieved 2008-08-10.
  2. 1 2 Bender, C. (1890). "Discussion on Cantilever Bridges by C.F. Findlay". Transactions of the Canadian Society of Civil Engineers. 3. Canadian Society of Civil Engineers. Retrieved 2008-08-10.
  3. 1 2 3 4 5 DeLony, Eric (1996). "Context for World Heritage Bridges". World Heritage Sites. International Council on Monuments and Sites. Archived from the original on 2005-02-21. Retrieved 2008-08-10.
  4. Waddell, J. A. L. (1916). Bridge Engineering - Volume 2. New York: John Wiley & Sons, Inc. pp.  1917 . Retrieved 2008-08-19.
  5. Durkee, Jackson (1999-05-24). National Steel Bridge Alliance: World's Longest Bridge Spans (PDF). American Institute of Steel Construction, Inc. Archived from the original (PDF) on 2002-06-01. Retrieved 2007-11-03.