Combustion instability

Last updated

Combustion instabilities are physical phenomena occurring in a reacting flow (e.g., a flame) in which some perturbations, even very small ones, grow and then become large enough to alter the features of the flow in some particular way. [1] [2] [3]

Contents

Stability map of a hypothetical combustor. This combustor operates at conditions in which no dangerous combustion-instabilities will happen. Combustion instabilities stability map.jpg
Stability map of a hypothetical combustor. This combustor operates at conditions in which no dangerous combustion-instabilities will happen.

In many practical cases, the appearance of combustion instabilities is undesirable. For instance, thermoacoustic instabilities are a major hazard to gas turbines and rocket engines. [1] Moreover, flame blowoff of an aero-gas-turbine engine in mid-flight is clearly dangerous (see flameout).

Because of these hazards, the engineering design process of engines involves the determination of a stability map (see figure). This process identifies a combustion-instability region and attempts to either eliminate this region or moved the operating region away from it. This is a very costly iterative process. For example, the numerous tests required to develop rocket engines [4] are largely in part due to the need to eliminate or reduce the impact of thermoacoustic combustion instabilities.

Classification of combustion instabilities

In applications directed towards engines, combustion instability has been classified into three categories, not entirely distinct. This classification was first introduced by Marcel Barrère and Forman A. Williams in 1969. [5] The three categories are [6]

Thermoacoustic combustion instabilities

In this type of instabilities the perturbations that grow and alter the features of the flow are of an acoustics nature. Their associated pressure oscillations can have well defined frequencies with amplitudes high enough to pose a serious hazard to combustion systems. [1] For example, in rocket engines, such as the Rocketdyne F-1 rocket engine [7] in the Saturn V program, instabilities can lead to massive damage of the combustion chamber and surrounding components (see rocket engines). Furthermore, instabilities are known to destroy gas-turbine-engine components during testing. [8] They represent a hazard to any type of combustion system.

Thermoacoustic combustion instabilities can be explained by distinguishing the following physical processes:

The simplest example of a thermoacoustic combustion instability is perhaps that happening in a horizontal Rijke tube (see also thermoacoustics): Consider the flow through a horizontal tube open at both ends, in which a flat flame sits at a distance of one-quarter the tube length from the leftmost end. In a similar way to an organ pipe, acoustic waves travel up and down the tube producing a particular pattern of standing waves. Such a pattern also forms in actual combustors, but takes a more complex form. [9] The acoustic waves perturb the flame. In turn, the flame affects the acoustics. This feedback between the acoustic waves in the combustor and the heat-release fluctuations from the flame is a hallmark of thermoacoustic combustion instabilities. It is typically represented with a block diagram (see figure). Under some conditions, the perturbations will grow and then saturate, producing a particular noise. In fact, it is said that the flame of a Rijke tube sings.

Combustion instabilities represented with a block diagram as a feedback amplifier. Combustion instabilities feeback loop.jpg
Combustion instabilities represented with a block diagram as a feedback amplifier.

The conditions under which perturbations will grow are given by Rayleigh's (John William Strutt, 3rd Baron Rayleigh) criterion: [10] Thermoacoustic combustion instabilities will occur if the volume integral of the correlation of pressure and heat-release fluctuations over the whole tube is larger than zero (see also thermoacoustics). In other words, instabilities will happen if heat-release fluctuations are coupled with acoustical pressure fluctuations in space-time (see figure). However, this condition is not sufficient for the instability to occur.

Thermoacoustic combustion instabilities happening in a bluff-body-flame-stabilized combustor. Dark regions indicated strong release of heat, and large deformations indicated high pressure. Notice that whenever and wherever large deformations happen, dark regions are seen. This is the hallmark coupling of pressure and heat-release seen in thermoacoustic combustion instabilities. Combustion instabilitites rogers 018 animation.gif
Thermoacoustic combustion instabilities happening in a bluff-body-flame-stabilized combustor. Dark regions indicated strong release of heat, and large deformations indicated high pressure. Notice that whenever and wherever large deformations happen, dark regions are seen. This is the hallmark coupling of pressure and heat-release seen in thermoacoustic combustion instabilities.

Another necessary condition for the establishment of a combustion instability is that the driving of the instability from the above coupling must be larger than the sum of the acoustic losses. [11] These losses happen through the tube's boundaries, or are due to viscous dissipation.

Combining the above two conditions, and for simplicity assuming here small fluctuations and an inviscid flow, leads to the extended Rayleigh's criterion. Mathematically, this criterion is given by the next inequality:

Here p' represents pressure fluctuations, q' heat release fluctuations, velocity fluctuations, T is a long enough time interval, V denotes volume, S surface, and is a normal to the surface boundaries. The left hand side denotes the coupling between heat-release fluctuations and acoustic pressure fluctuations, and the right hand side represents the loss of acoustic energy at the tube boundaries.

Graphical representation of the extended Rayleigh's criterion for some combustor showing a region where gains exceeds losses and the combustor response is strong. This suggests a strong likelihood of having a combustion instability. This figure is adapted from. Graphical extended Rayleigh criterion.jpg
Graphical representation of the extended Rayleigh's criterion for some combustor showing a region where gains exceeds losses and the combustor response is strong. This suggests a strong likelihood of having a combustion instability. This figure is adapted from.

Graphically, for a particular combustor, the extended Rayleigh's criterion is represented in the figure on the right as a function of frequency. The left hand side of the above inequality is called gains, and the right hand side losses. Notice that there is a region where the gains exceeds the losses. In other words, the above inequality is satisfied. Furthermore, note that in this region the response of the combustor to acoustic fluctuations peaks. Thus, the likelihood of a combustion instability in this region is high, making it a region to avoid in the operation of the combustor. This graphical representation of a hypothetical combustor allows to group three methods to prevent combustion instabilities: [1] increase the losses; reduce the gains; or move the combustor's peak response away from the region where gains exceed losses.

To clarify further the role of the coupling between heat-release fluctuations and pressure fluctuations in producing and driving an instability, it is useful to make a comparison with the operation of an internal combustion engine (ICE). In an ICE, a higher thermal efficiency is achieved by releasing the heat via combustion at a higher pressure. Likewise, a stronger driving of a combustion instability happens when the heat is released at a higher pressure. But while high heat release and high pressure coincide (roughly) throughout the combustion chamber in an ICE, they coincide at a particular region or regions during a combustion instability. Furthermore, whereas in an ICE the high pressure is achieved through mechanical compression with a piston or a compressor, in a combustion instability high pressure regions form when a standing acoustic wave is formed.

The physical mechanisms producing the above heat-release fluctuations are numerous. [1] [8] Nonetheless, they can be roughly divided into three groups: heat-release fluctuations due to mixture inhomogeneities; those due to hydrodynamic instabilities; and, those due to static combustion instabilities. To picture heat-release fluctuations due to mixture inhomogeneities, consider a pulsating stream of gaseous fuel upstream of a flame-holder. Such a pulsating stream may well be produced by acoustic oscillations in the combustion chamber that are coupled with the fuel-feed system. Many other causes are possible. The fuel mixes with the ambient air in a way that an inhomogeneous mixture reaches the flame, e.g., the blobs of fuel-and-air that reach the flame could alternate between rich and lean. As a result, heat-release fluctuations occur. Heat-release fluctuations produced by hydrodynamic instabilities happen, for example, in bluff-body-stabilized combustors when vortices interact with the flame (see previous figure). [12] Lastly, heat-release fluctuations due to static instabilities are related to the mechanisms explained in the next section.

Static instability or flame blow-off

Flame from a swirl-stabilized, premixed, academic combustor undergoing blow-off. The flow is from right to left. The fuel-air ratio is decreased. This makes the flame to change its shape, then become unstable, and eventually blow-off. Webp.net-gifmaker (1).gif
Flame from a swirl-stabilized, premixed, academic combustor undergoing blow-off. The flow is from right to left. The fuel-air ratio is decreased. This makes the flame to change its shape, then become unstable, and eventually blow-off.

Static instability [2] or flame blow-off refer to phenomena involving the interaction between the chemical composition of the fuel-oxidizer mixture and the flow environment of the flame. [13] To explain these phenomena, consider a flame that is stabilized with swirl, as in a gas-turbine combustor, or with a bluff body. Moreover, say that the chemical composition and flow conditions are such that the flame is burning vigorously, and that the former is set by the fuel-oxidizer ratio (see air-fuel ratio) and the latter by the oncoming velocity. For a fixed oncoming velocity, decreasing the fuel-oxidizer ratio makes the flame change its shape, and by decreasing it further the flame oscillates or moves intermittently. In practice, these are undesirable conditions. Further decreasing the fuel-oxidizer ratio blows-off the flame. This is clearly an operational failure. For a fixed fuel-oxidizer ratio, increasing the oncoming velocity makes the flame behave in a similar way to the one just described.

S-shape curve resulting from the solution of an homogeneous reactor model representing a flame. S-shape-curve-combustion.jpg
S-shape curve resulting from the solution of an homogeneous reactor model representing a flame.

Even though the processes just described are studied with experiments or with Computational Fluid Dynamics, it is instructive to explain them with a simpler analysis. In this analysis, the interaction of the flame with the flow environment is modeled as a perfectly-mixed chemical reactor. [14] With this model, the governing parameter is the ratio between a flow time-scale (or residence time in the reactor) and a chemical-time scale, and the key observable is the reactor's maximum temperature. The relationship between parameter and observable is given by the so-called S-shape curve (see figure). This curve results from the solution of the governing equations of the reactor model. It has three branches: an upper branch in which the flame is burning vigorously, i.e., it is "stable"; a middle branch in which the flame is "unstable" (the probability for solutions of the reactor-model equations to be in this unstable branch is small); and a lower branch in which there is no flame but a cold fuel-oxidizer mixture. The decrease of the fuel-oxidizer ratio or increase of oncoming velocity mentioned above correspond to a decrease of the ratio of the flow and chemical time scales. This in turn corresponds to a movement towards the left in the S-shape curve. In this way, a flame that is burning vigorously is represented by the upper branch, and its blow-off is the movement towards the left along this branch towards the quenching point Q. Once this point is passed, the flame enters the middle branch, becoming thus "unstable", or blows off. This is how this simple model captures qualitatively the more complex behavior explained in the above example of a swirl or bluff-body-stabilized flame.

Intrinsic flame instabilities

In contrast with thermoacoustic combustion instabilities, where the role of acoustics is dominant, intrinsic flame instabilities refer to instabilities produced by differential and preferential diffusion, thermal expansion, buoyancy, and heat losses. Examples of these instabilities include the Darrieus–Landau instability, the Rayleigh-Taylor instability, and thermal-diffusive instabilities (see Double diffusive convection).

Related Research Articles

Combustion Chemical reaction

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While the activation energy must be overcome to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining.

Engine Machine that converts one or more forms of energy into mechanical energy

An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.

Ramjet Atmospheric jet engine designed to operate at supersonic speeds

A ramjet, or athodyd, is a form of airbreathing jet engine that uses the forward motion of the engine to produce thrust. Since it produces no thrust when stationary ramjet-powered vehicles require an assisted take-off like a rocket assist to accelerate it to a speed where it begins to produce thrust. Ramjets work most efficiently at supersonic speeds around Mach 3 and can operate up to speeds of Mach 6.

Hybrid-propellant rocket Rocket engine that uses both liquid / gaseous and solid fuel

A hybrid-propellant rocket is a rocket with a rocket motor that uses rocket propellants in two different phases: one solid and the other either gas or liquid. The hybrid rocket concept can be traced back to at least the 1930s.

Turbojet Airbreathing jet engine, typically used in aircraft

The turbojet is an airbreathing jet engine, typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

Scramjet Jet engine where combustion takes place in supersonic airflow

A scramjet is a variant of a ramjet airbreathing jet engine in which combustion takes place in supersonic airflow. As in ramjets, a scramjet relies on high vehicle speed to compress the incoming air forcefully before combustion, but whereas a ramjet decelerates the air to subsonic velocities before combustion using shock cones, a scramjet has no shock cone and slows the airflow using shockwaves produced by its ignition source in place of a shock cone. This allows the scramjet to operate efficiently at extremely high speeds.

Rocket engine Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

Expander cycle Rocket engine operation method

The expander cycle is a power cycle of a bipropellant rocket engine. In this cycle, the fuel is used to cool the engine's combustion chamber, picking up heat and changing phase. The now heated and gaseous fuel then powers the turbine that drives the engine's fuel and oxidizer pumps before being injected into the combustion chamber and burned.

Brayton cycle Thermodynamic cycle

The Brayton cycle is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. The original Brayton engines used a piston compressor and piston expander, but modern gas turbine engines and airbreathing jet engines also follow the Brayton cycle. Although the cycle is usually run as an open system, it is conventionally assumed for the purposes of thermodynamic analysis that the exhaust gases are reused in the intake, enabling analysis as a closed system.

A combustion chamber is part of an internal combustion engine in which the fuel/air mix is burned. For steam engines, the term has also been used for an extension of the firebox which is used to allow a more complete combustion process.

Afterburner Adds additional thrust to an engine at the cost of increased fuel consumption

An afterburner is an additional combustion component used on some jet engines, mostly those on military supersonic aircraft. Its purpose is to increase thrust, usually for supersonic flight, takeoff, and combat. The afterburning process injects additional fuel into a combustor in the jet pipe behind the turbine, "reheating" the exhaust gas. Afterburning significantly increases thrust as an alternative to using a bigger engine with its attendant weight penalty, but at the cost of increased fuel consumption which limits its use to short periods. This aircraft application of reheat contrasts with the meaning and implementation of reheat applicable to gas turbines driving electrical generators and which reduces fuel consumption.

Liquid-propellant rocket Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine that uses liquid propellants. Liquids are desirable because they have a reasonably high density and high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low. It is also possible to use lightweight centrifugal turbopumps to pump the rocket propellant from the tanks into the combustion chamber, which means that the propellants can be kept under low pressure. This permits the use of low-mass propellant tanks that do not need to resist the high pressures needed to store significant amounts of gasses, resulting in a low mass ratio for the rocket.

Thermoacoustics is the interaction between temperature, density and pressure variations of acoustic waves. Thermoacoustic heat engines can readily be driven using solar energy or waste heat and they can be controlled using proportional control. They can use heat available at low temperatures which makes it ideal for heat recovery and low power applications. The components included in thermoacoustic engines are usually very simple compared to conventional engines. The device can easily be controlled and maintained.

Rocketdyne F-1 Rocket engine used on the Saturn V rocket

The F-1, commonly known as Rocketdyne F1, is a rocket engine developed by Rocketdyne. This engine uses a gas-generator cycle developed in the United States in the late 1950s and was used in the Saturn V rocket in the 1960s and early 1970s. Five F-1 engines were used in the S-IC first stage of each Saturn V, which served as the main launch vehicle of the Apollo program. The F-1 remains the most powerful single combustion chamber liquid-propellant rocket engine ever developed.

Rocketdyne J-2 Rocket engine

The J-2 is a liquid-fuel cryogenic rocket engine used on NASA's Saturn IB and Saturn V launch vehicles. Built in the U.S. by Rocketdyne, the J-2 burned cryogenic liquid hydrogen (LH2) and liquid oxygen (LOX) propellants, with each engine producing 1,033.1 kN (232,250 lbf) of thrust in vacuum. The engine's preliminary design dates back to recommendations of the 1959 Silverstein Committee. Rocketdyne won approval to develop the J-2 in June 1960 and the first flight, AS-201, occurred on 26 February 1966. The J-2 underwent several minor upgrades over its operational history to improve the engine's performance, with two major upgrade programs, the de Laval nozzle-type J-2S and aerospike-type J-2T, which were cancelled after the conclusion of the Apollo program.

Rijke tube

The Rijke tube is a cylindrical tube with both ends open, inside of which a heat source is placed that turns heat into sound, by creating a self-amplifying standing wave. It is an entertaining phenomenon in acoustics and is an excellent example of resonance.

A combustor is a component or area of a gas turbine, ramjet, or scramjet engine where combustion takes place. It is also known as a burner, combustion chamber or flame holder. In a gas turbine engine, the combustor or combustion chamber is fed high-pressure air by the compression system. The combustor then heats this air at constant pressure as the fuel/air mix burns. As it burns the fuel/air mix heats and rapidly expands. The burned mix is exhausted from the combustor through the nozzle guide vanes to the turbine. In the case of a ramjet or scramjet engines, the exhaust is directly fed out through the nozzle.

Components of jet engines Brief description of components needed for jet engines

This article briefly describes the components and systems found in jet engines.

An airbreathing jet engine is a jet engine that emits a jet of hot exhaust gases formed from air that is forced into the engine by several stages of centrifugal, axial or ram compression, which is then heated and expanded through a nozzle. They are typically gas turbine engines. The majority of the mass flow through an airbreathing jet engine is provided by air taken from outside of the engine and heated internally, using energy stored in the form of fuel.

Rocket propellant Chemical or mixture used as fuel for a rocket engine

Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines.

References

  1. 1 2 3 4 5 6 Culick, F. E. and Kuentzmann, P. (2006). Unsteady Motions in Combustion Chambers for Propulsion Systems. NATO Research and Technology Organization.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. 1 2 Lieuwen, T. C. (2012). Unsteady Combustor Physics. Cambridge University Press.
  3. Matalon, M. (2007). "Intrinsic flame instabilities in premixed and nonpremixed combustion". Annual Review of Fluid Mechanics. 39 (1): 163–191. Bibcode:2007AnRFM..39..163M. doi:10.1146/annurev.fluid.38.050304.092153.
  4. Pempie, P. and Vernin, H. "Liquid rocket engine test plan comparison". AIAA Paper 2001-3256.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  5. Barrere, M., & Williams, F. A. (1969, January). Comparison of combustion instabilities found in various types of combustion chambers. In Symposium (International) on Combustion (Vol. 12, No. 1, pp. 169-181). Elsevier.
  6. Williams, Forman A. Combustion theory. CRC Press, 2018.
  7. Oefelein, J. C.; Yang, V. (1993). "Comprehensive review of liquid-propellant combustion instabilities in F-1 engines". Journal of Propulsion and Power. 9 (5): 657–677. Bibcode:1993JPP.....9..657O. doi:10.2514/3.23674.
  8. 1 2 Lieuwen, T. C.; Yang, V. (2005). Combustion instabilities in gas turbine engines. AIAA.
  9. Poinsot, T. and Veynante, D. (2005). Theoretical and numerical combustion. RT Edwards.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. Rayleigh, J. W. S. (1896). The Theory of Sound Volume 2. Dover Publications.
  11. Nicoud, F. and Poinsot, T. (2005). "Thermoacoustic instabilities: Should the Rayleigh criterion be extended to include entropy changes?" (PDF). Combustion and Flame. 142 (1–2): 153–159. doi:10.1016/j.combustflame.2005.02.013.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Schadow, K. C. and Gutmark, E. (1992). "Combustion instability related to vortex shedding in dump combustors and their passive control". Progress in Energy and Combustion Science. 18 (2): 117–132. doi:10.1016/0360-1285(92)90020-2.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Glassman, I. and Yetter, R. A. and Glumac, N. G. (2014). Combustion. Academic Press.{{cite book}}: CS1 maint: multiple names: authors list (link)
  14. Peters, N. (2000). Turbulent Combustion. Cambridge University Press.