Concurrent MetateM

Last updated

Concurrent MetateM is a multi-agent language in which each agent is programmed using a set of (augmented) temporal logic specifications of the behaviour it should exhibit. These specifications are executed directly to generate the behaviour of the agent. As a result, there is no risk of invalidating the logic as with systems where logical specification must first be translated to a lower-level implementation.

Contents

The root of the MetateM concept is Gabbay's separation theorem; any arbitrary temporal logic formula can be rewritten in a logically equivalent past  future form. Execution proceeds by a process of continually matching rules against a history, and firing those rules when antecedents are satisfied. Any instantiated future-time consequents become commitments which must subsequently be satisfied, iteratively generating a model for the formula made up of the program rules.

Temporal Connectives

The Temporal Connectives of Concurrent MetateM can divided into two categories, as follows: [1]

The connectives {◎,●,◆,■,◯,◇,□} are unary; the remainder are binary.

Strict past time connectives

Weak last

●ρ is satisfied now if ρ was true in the previous time. If ●ρ is interpreted at the beginning of time, it is satisfied despite there being no actual previous time. Hence "weak" last.

Strong last

◎ρ is satisfied now if ρ was true in the previous time. If ◎ρ is interpreted at the beginning of time, it is not satisfied because there is no actual previous time. Hence "strong" last.

Was

◆ρ is satisfied now if ρ was true in any previous moment in time.

Heretofore

■ρ is satisfied now if ρ was true in every previous moment in time.

Since

ρSψ is satisfied now if ψ is true at any previous moment and ρ is true at every moment after that moment.

Zince, or weak since

ρZψ is satisfied now if (ψ is true at any previous moment and ρ is true at every moment after that moment) OR ψ has not happened in the past.

Present and future time connectives

Next

◯ρ is satisfied now if ρ is true in the next moment in time.

Sometime

◇ρ is satisfied now if ρ is true now or in any future moment in time.

Always

ρ is satisfied now if ρ is true now and in every future moment in time.

Until

ρUψ is satisfied now if ψ is true at any future moment and ρ is true at every moment prior.

Unless

ρWψ is satisfied now if (ψ is true at any future moment and ρ is true at every moment prior) OR ψ does not happen in the future.

Related Research Articles

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

Original proof of Gödels completeness theorem

The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not include the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

Model checking Computer science field

In computer science, model checking or property checking is a method for checking whether a finite-state model of a system meets a given specification. This is typically associated with hardware or software systems, where the specification contains liveness requirements as well as safety requirements.

In logic, temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time. It is sometimes also used to refer to tense logic, a modal logic-based system of temporal logic introduced by Arthur Prior in the late 1950s, with important contributions by Hans Kamp. It has been further developed by computer scientists, notably Amir Pnueli, and logicians.

Modal logic is a collection of formal systems developed to represent statements about necessity and possibility. It plays a major role in philosophy of language, epistemology, metaphysics, and natural language semantics. Modal logics extend other systems by adding unary operators and , representing possibility and necessity respectively. For instance the modal formula can be read as "possibly " while can be read as "necessarily ". Modal logics can be used to represent different phenomena depending on what kind of necessity and possibility is under consideration. When is used to represent epistemic necessity, states that is epistemically necessary, or in other words that it is known. When is used to represent deontic necessity, states that is a moral or legal obligation.

In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. A formal language can be identified with the set of formulas in the language.

A formula of the predicate calculus is in prenex normal form (PNF) if it is rewritten as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propositional logic, it provides a canonical normal form useful in automated theorem proving.

In logic, linear temporal logic or linear-time temporal logic (LTL) is a modal temporal logic with modalities referring to time. In LTL, one can encode formulae about the future of paths, e.g., a condition will eventually be true, a condition will be true until another fact becomes true, etc. It is a fragment of the more complex CTL*, which additionally allows branching time and quantifiers. Subsequently, LTL is sometimes called propositional temporal logic, abbreviated PTL. In terms of expressive power, linear temporal logic (LTL) is a fragment of first-order logic.

Property Specification Language (PSL) is a temporal logic extending linear temporal logic with a range of operators for both ease of expression and enhancement of expressive power. PSL makes an extensive use of regular expressions and syntactic sugaring. It is widely used in the hardware design and verification industry, where formal verification tools and/or logic simulation tools are used to prove or refute that a given PSL formula holds on a given design.

Computation tree logic (CTL) is a branching-time logic, meaning that its model of time is a tree-like structure in which the future is not determined; there are different paths in the future, any one of which might be an actual path that is realized. It is used in formal verification of software or hardware artifacts, typically by software applications known as model checkers, which determine if a given artifact possesses safety or liveness properties. For example, CTL can specify that when some initial condition is satisfied, then all possible executions of a program avoid some undesirable condition. In this example, the safety property could be verified by a model checker that explores all possible transitions out of program states satisfying the initial condition and ensures that all such executions satisfy the property. Computation tree logic belongs to a class of temporal logics that includes linear temporal logic (LTL). Although there are properties expressible only in CTL and properties expressible only in LTL, all properties expressible in either logic can also be expressed in CTL*.

In mathematical logic, Craig's interpolation theorem is a result about the relationship between different logical theories. Roughly stated, the theorem says that if a formula φ implies a formula ψ, and the two have at least one atomic variable symbol in common, then there is a formula ρ, called an interpolant, such that every non-logical symbol in ρ occurs both in φ and ψ, φ implies ρ, and ρ implies ψ. The theorem was first proved for first-order logic by William Craig in 1957. Variants of the theorem hold for other logics, such as propositional logic. A stronger form of Craig's interpolation theorem for first-order logic was proved by Roger Lyndon in 1959; the overall result is sometimes called the Craig–Lyndon theorem.

In theoretical computer science, the modal μ-calculus is an extension of propositional modal logic by adding the least fixed point operator μ and the greatest fixed point operator ν, thus a fixed-point logic.

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

In mathematical logic and computer science, Gabbay's separation theorem, named after Dov Gabbay, states that any arbitrary temporal logic formula can be rewritten in a logically equivalent "past → future" form. I.e. the future becomes what must be satisfied. This form can be used as execution rules; a MetateM program is a set of such rules.

TLA<sup>+</sup> Formal specification language

TLA+ is a formal specification language developed by Leslie Lamport. It is used for designing, modelling, documentation, and verification of programs, especially concurrent systems and distributed systems. TLA+ is considered to be exhaustively-testable pseudocode, and its use likened to drawing blueprints for software systems; TLA is an acronym for Temporal Logic of Actions.

In mathematics and mathematical logic, Boolean algebra is the branch of algebra in which the values of the variables are the truth values true and false, usually denoted 1 and 0, respectively. Instead of elementary algebra, where the values of the variables are numbers and the prime operations are addition and multiplication, the main operations of Boolean algebra are the conjunction (and) denoted as ∧, the disjunction (or) denoted as ∨, and the negation (not) denoted as ¬. It is thus a formalism for describing logical operations, in the same way that elementary algebra describes numerical operations.

Metric temporal logic (MTL) is a special case of temporal logic. It is an extension of temporal logic in which temporal operators are replaced by time-constrained versions like until, next, since and previous operators. It is a linear-time logic that assumes both the interleaving and fictitious-clock abstractions. It is defined over a point-based weakly-monotonic integer-time semantics. For MTL, the exact complexity of the satisfiability problems is known and independent of interval-based or point-based, synchronous or asynchronous interpretation: EXPSPACE-complete.

In model checking, a branch of computer science, linear time properties are used to describe requirements of a model of a computer system. Example properties include "the vending machine does not dispense a drink until money has been entered" or "the computer program eventually terminates". Fairness properties can be used to rule out unrealistic paths of a model. For instance, in a model of two traffic lights, the liveness property "both traffic lights are green infinitely often" may only be true under the unconditional fairness constraint "each traffic light changes colour infinitely often".

References

  1. "core.ac.uk" (PDF).