Coupled substitution

Last updated
Example on bottom where albite (Na Al Si3O8) changes to anorthite (Ca Al2Si2O8), Al
replaces Si
and Ca
for Na Feldspar series.jpg
Example on bottom where albite (Na Al Si 3 O 8) changes to anorthite (Ca Al 2 Si 2 O 8), Al
replaces Si
and Ca
for Na

Coupled substitution is the geological process by which two elements simultaneous substitute into a crystal in order to maintain overall electrical neutrality and keep the charge constant. [1] In forming a solid solution series, ionic size is more important than ionic charge, as this can be compensated for elsewhere in the structure. [2]

Contents

Ionic size

To make a geometrically stable structure in a mineral, atoms must fit together in terms of both their size and charge. The atoms have to fit together so that their electron shells can interact with one another and they also have to produce a neutral molecule. For these reasons the sizes and electron shell structure of atoms determine what element combinations are possible and the geometrical form that various minerals take. Because electrons are donated and received, it is the ionic radius of the element that controls the size and determines how atoms fit together in minerals. [3]

Examples

For example, when a plagioclase feldspar solid solution series forms, albite (Na Al Si 3 O 8) can change to anorthite (Ca Al 2 Si 2 O 8) by having Al3+
replace Si4+
. However, this leaves a negative charge that has to be balanced by the (coupled) substitution of Ca2+
for Na+
. [2]

Related Research Articles

<span class="mw-page-title-main">Inorganic chemistry</span> Field of chemistry

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge.

<span class="mw-page-title-main">Hornblende</span> Complex inosilicate series of minerals

Hornblende is a complex inosilicate series of minerals. It is not a recognized mineral in its own right, but the name is used as a general or field term, to refer to a dark amphibole. Hornblende minerals are common in igneous and metamorphic rocks.

<span class="mw-page-title-main">Amphibole</span> Group of inosilicate minerals

Amphibole is a group of inosilicate minerals, forming prism or needlelike crystals, composed of double chain SiO
4
tetrahedra, linked at the vertices and generally containing ions of iron and/or magnesium in their structures. Its IMA symbol is Amp. Amphiboles can be green, black, colorless, white, yellow, blue, or brown. The International Mineralogical Association currently classifies amphiboles as a mineral supergroup, within which are two groups and several subgroups.

<span class="mw-page-title-main">Pyroxene</span> Group of inosilicate minerals with single chains of silica tetrahedra

The pyroxenes are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula XY(Si,Al)2O6, where X represents calcium (Ca), sodium (Na), iron or magnesium (Mg) and more rarely zinc, manganese or lithium, and Y represents ions of smaller size, such as chromium (Cr), aluminium (Al), magnesium (Mg), cobalt (Co), manganese (Mn), scandium (Sc), titanium (Ti), vanadium (V) or even iron. Although aluminium substitutes extensively for silicon in silicates such as feldspars and amphiboles, the substitution occurs only to a limited extent in most pyroxenes. They share a common structure consisting of single chains of silica tetrahedra. Pyroxenes that crystallize in the monoclinic system are known as clinopyroxenes and those that crystallize in the orthorhombic system are known as orthopyroxenes.

<span class="mw-page-title-main">Sekaninaite</span> Mg, Fe, Al cyclosilicate mineral

Sekaninaite ((Fe+2,Mg)2Al4Si5O18) is a silicate mineral, the iron-rich analogue of cordierite.

An oxyanion, or oxoanion, is an ion with the generic formula A
x
Oz
y
. Oxyanions are formed by a large majority of the chemical elements. The formulae of simple oxyanions are determined by the octet rule. The corresponding oxyacid of an oxyanion is the compound H
z
A
x
O
y
. The structures of condensed oxyanions can be rationalized in terms of AOn polyhedral units with sharing of corners or edges between polyhedra. The oxyanions adenosine monophosphate (AMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP) are important in biology.

<span class="mw-page-title-main">Forsterite</span> Magnesium end-member of olivine, a nesosilicate mineral

Forsterite (Mg2SiO4; commonly abbreviated as Fo; also known as white olivine) is the magnesium-rich end-member of the olivine solid solution series. It is isomorphous with the iron-rich end-member, fayalite. Forsterite crystallizes in the orthorhombic system (space group Pbnm) with cell parameters a 4.75 Å (0.475 nm), b 10.20 Å (1.020 nm) and c 5.98 Å (0.598 nm).

<span class="mw-page-title-main">Silicate mineral</span> Rock-forming minerals with predominantly silicate anions

Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust.

<span class="mw-page-title-main">Chondrodite</span>

Chondrodite is a nesosilicate mineral with formula (Mg,Fe)
5
(SiO
4
)
2
(F,OH,O)
2
. Although it is a fairly rare mineral, it is the most frequently encountered member of the humite group of minerals. It is formed in hydrothermal deposits from locally metamorphosed dolomite. It is also found associated with skarn and serpentinite. It was discovered in 1817 at Pargas in Finland, and named from the Greek for "granule", which is a common habit for this mineral.

<span class="mw-page-title-main">Nontronite</span> Dioctahedral (Fe3+) smectite, phyllosilicate mineral

Nontronite is the iron(III) rich member of the smectite group of clay minerals. Nontronites typically have a chemical composition consisting of more than ~30% Fe2O3 and less than ~12% Al2O3 (ignited basis). Nontronite has very few economic deposits like montmorillonite. Like montmorillonite, nontronite can have variable amounts of adsorbed water associated with the interlayer surfaces and the exchange cations.

<span class="mw-page-title-main">Tschermakite</span> Amphibole, double chain inosilicate mineral

The endmember hornblende tschermakite (☐Ca2(Mg3Al2)(Si6Al2)O22(OH)2) is a calcium rich monoclinic amphibole mineral. It is frequently synthesized along with its ternary solid solution series members tremolite and cummingtonite so that the thermodynamic properties of its assemblage can be applied to solving other solid solution series from a variety of amphibole minerals.

Zussmanite is a hydrated iron-rich silicate mineral with the chemical formula K(Fe2+,Mg,Mn)13[AlSi17O42](OH)14. It occurs as pale green crystals with perfect cleavage.

Bityite is considered a rare mineral, and it is an endmember to the margarite mica sub-group found within the phyllosilicate group. The mineral was first described by Antoine François Alfred Lacroix in 1908, and later its chemical composition was concluded by Professor Hugo Strunz. Bityite has a close association with beryl, and it generally crystallizes in pseudomorphs after it, or in cavities associated with reformed beryl crystals. The mineral is considered a late-stage constituent in lithium bearing pegmatites, and has only been encountered in a few localities throughout the world. The mineral was named by Lacroix after Mt. Bity, Madagascar from where it was first discovered.

Gugiaite is a melilite mineral, named for the Chinese village of Gugia where it was first discovered. Its chemical formula is Ca2BeSi2O7. It occurs mostly in skarns with melanite adjacent to an alkali syenite and has no economic value. Its crystals are small tetragonal tablets with vitreous luster and perfect cleavage. It is colorless and transparent with a density of three. The mineral belongs to space group P-421m and is strongly piezoelectric.

<span class="mw-page-title-main">Ferrogedrite</span> Amphibole, double chain inosilicate mineral

Ferrogedrite is an amphibole mineral with the complex chemical formula of ☐Fe2+2(Fe2+3Al2)(Si6Al2)O22(OH)2. It is sodium and calcium poor, making it part of the magnesium-iron-manganese-lithium amphibole subgroup. Defined as less than 1.00 apfu (atoms per formula unit) of Na + Ca and consisting of greater than 1.00 apfu of (Mg, Fe2+, Mn2+, Li) separating it from the calcic-sodic amphiboles. It is related to anthophyllite amphibole and gedrite through coupled substitution of (Al, Fe3+) for (Mg, Fe2+, Mn) and Al for Si. and determined by the content of silicon in the standard cell.

Mineral alteration refers to the various natural processes that alter a mineral's chemical composition or crystallography.

The mineral khmaralite is a beryllium bearing mineral of the sapphirine group with a chemical formula of (Mg,Al,Fe)16[(Al,Si,Be)12O36]O40. It is most associated with sillimanite, surinamite, musgravite, garnet, and biotite. The known color is a dark greenish blue or a dark green, with a colorless streak. It is transparent with a vitreous luster with no cleavage and a Moh's hardness of 7. It is brittle with an uneven fracture. The calculated density is 3.61 g/cm3.

<span class="mw-page-title-main">Tumchaite</span>

Tumchaite, Na2(Zr,Sn)Si4O11·H2O, is a colorless to white monoclinic phyllosilicate mineral. It is associated with calcite, dolomite, and pyrite in the late dolomite-calcite carbonatites. It can be transparent to translucent; has a vitreous luster; and has perfect cleavage on {100}. Its hardness is 4.5, between fluorite and apatite. Tumchaite is isotypic with penkvilksite. The structure of the mineral is identified by silicate sheets parallel {100}, formed by alternation of clockwise and counterclockwise growing spiral chains of corner-sharing SiO4 tetrahedra. Tumchaite is named for the river Tumcha near Vuoriyarvi massif.

References

  1. 1 2 "Coupled Substitution -- from Eric Weisstein's World of Chemistry". Archived from the original on 2019-03-25. Retrieved 2019-03-26.
  2. 1 2 Allaby, Michael (2013-07-04). A Dictionary of Geology and Earth Sciences. ISBN   9780199653065.
  3. Langmuir, Charles Herbert; Broecker, Wallace S. (2012). How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind. ISBN   9780691140063.
  4. 1 2 3 4 "Tulane course". Archived from the original on 2017-07-09. Retrieved 2019-03-26.
  5. Fleet, M. E.; Mumin, A. Hamid (1997). "Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis" (PDF). American Mineralogist. 82 (1–2): 182–193. Bibcode:1997AmMin..82..182F. doi:10.2138/am-1997-1-220. S2CID   55899431. Archived (PDF) from the original on 2017-08-10. Retrieved 2019-03-27.
  6. Park, B. -H.; Suito, H. (1993). "Coupled substitution of NiO and TiO2 in haematite". Journal of Materials Science. 28 (1): 52–56. Bibcode:1993JMatS..28...52P. doi:10.1007/BF00349032. S2CID   97048742.
  7. Lin, J-C. and Guggenheim, S. (1983). "The crystal structure of a Li,Be-rich brittle mica: a dioctaheral-trioctahedral intermediate". American Mineralogist, 68, 130-142.
  8. 1 2 Guggenheim, S. (1984). "The brittle micas". Reviews in Mineralogy, 13, 61-104.
  9. Deer, William Alexander, Robert Andrew Howie, and Jack Zussman (1997). Rock-forming minerals. 2B. Double-chain silicates, Vol. 2. Geological Society.