David A. Fidock

Last updated
David A. Fidock
DF MMV.jpg
Education
Scientific career
FieldsMicrobiology, immunology
Institutions
Thesis Molecular and Immuno-Epidemiological Studies of the Plasmodium falciparum STARP and LSA-1 Antigens Expressed During the Pre-Erythrocytic Stages in Humans (1994)
Doctoral advisor Pierre Druilhe
Website www.fidock.org

David A. Fidock (born 8 December 1965), is the CS Hamish Young Professor of Microbiology and Immunology and Professor of Medical Sciences at Columbia University Irving Medical Center in Manhattan. [1] [2] [3]

Contents

Education

Fidock attended the University of Adelaide and earned a bachelor of mathematical sciences and an honors degree in genetics in 1985. He earned a PhD in microbiology from the Institut Pasteur in Paris in 1994. His dissertation advisor was Pierre Druilhe, and his thesis was titled "Molecular and Immuno-Epidemiological Studies of the Plasmodium falciparum STARP and LSA-1 Antigens Expressed During the Pre-Erythrocytic Stages in Humans". [4] [5] [6] He underwent postdoctoral training with Anthony James at University of California, Irvine, and with Thomas Wellems at the National Institutes of Health. [4]

Career

After his post-doctoral training, Fidock joined the Albert Einstein College of Medicine in New York as an Assistant Professor in the Department of Microbiology and Immunology. In 2007, Fidock became an Associate Professor at Columbia University in the Departments of Microbiology and Immunology and of Medicine (Division of Infectious Diseases). [2] Since 2008, Fidock has been a tenured Professor of Microbiology and Immunology and of Medical Sciences at Columbia. [2] In 2017 he received the C.S. Hamish Young endowed Professorship. From 2008-2023 he served as the Program Director of the NIH T32-funded Graduate Program in Microbiology, Immunology, and Infection. In 2023, he was elected as the incoming President of the American Society of Tropical Medicine and Hygiene. [7]

Research

Fidock's research focuses on the genetic and molecular mechanisms behind antimalarial drug resistance in the human parasite Plasmodium falciparum , as well as target-based drug discovery and development, and parasite metabolism and biology. [8] [9] [10] [ non-primary source needed ] He led the development of methods for genetically modifying malaria parasites and for elucidating the genetic basis of P. falciparum resistance to various first-line medicines (including artemisinin, chloroquine and piperaquine). [11] [12] [13] [ non-primary source needed ]

He has published more than 280 papers on malaria, with a current h-index of 97. His work has been cited over 34,000 times. His work has been funded by the NIH, the Bill & Melinda Gates Foundation, the Department of Defense, the Burroughs Wellcome Fund and the Medicines for Malaria Venture. [14] [2] [8] [7] [15]

Honors

Publications

Related Research Articles

<span class="mw-page-title-main">Malaria</span> Mosquito-borne infectious disease

Malaria is a mosquito-borne infectious disease that affects humans and other vertebrates. Human malaria causes symptoms that typically include fever, fatigue, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. Symptoms usually begin 10 to 15 days after being bitten by an infected Anopheles mosquito. If not properly treated, people may have recurrences of the disease months later. In those who have recently survived an infection, reinfection usually causes milder symptoms. This partial resistance disappears over months to years if the person has no continuing exposure to malaria.

Antimalarial medications or simply antimalarials are a type of antiparasitic chemical agent, often naturally derived, that can be used to treat or to prevent malaria, in the latter case, most often aiming at two susceptible target groups, young children and pregnant women. As of 2018, modern treatments, including for severe malaria, continued to depend on therapies deriving historically from quinine and artesunate, both parenteral (injectable) drugs, expanding from there into the many classes of available modern drugs. Incidence and distribution of the disease is expected to remain high, globally, for many years to come; moreover, known antimalarial drugs have repeatedly been observed to elicit resistance in the malaria parasite—including for combination therapies featuring artemisinin, a drug of last resort, where resistance has now been observed in Southeast Asia. As such, the needs for new antimalarial agents and new strategies of treatment remain important priorities in tropical medicine. As well, despite very positive outcomes from many modern treatments, serious side effects can impact some individuals taking standard doses.

<i>Plasmodium</i> Genus of parasitic protists that can cause malaria

Plasmodium is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of Plasmodium species involve development in a blood-feeding insect host which then injects parasites into a vertebrate host during a blood meal. Parasites grow within a vertebrate body tissue before entering the bloodstream to infect red blood cells. The ensuing destruction of host red blood cells can result in malaria. During this infection, some parasites are picked up by a blood-feeding insect, continuing the life cycle.

<i>Plasmodium falciparum</i> Protozoan species of malaria parasite

Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. It is responsible for around 50% of all malaria cases. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer and is classified as a Group 2A (probable) carcinogen.

<span class="mw-page-title-main">Artemisinin</span> Group of drugs used against malaria

Artemisinin and its semisynthetic derivatives are a group of drugs used in the treatment of malaria due to Plasmodium falciparum. It was discovered in 1972 by Tu Youyou, who shared the 2015 Nobel Prize in Physiology or Medicine for her discovery. Artemisinin-based combination therapies (ACTs) are now standard treatment worldwide for P. falciparum malaria as well as malaria due to other species of Plasmodium. Artemisinin is extracted from the plant Artemisia annua a herb employed in Chinese traditional medicine. A precursor compound can be produced using a genetically engineered yeast, which is much more efficient than using the plant.

<span class="mw-page-title-main">Artemether</span> Chemical compound

Artemether is a medication used for the treatment of malaria. The injectable form is specifically used for severe malaria rather than quinine. In adults, it may not be as effective as artesunate. It is given by injection in a muscle. It is also available by mouth in combination with lumefantrine, known as artemether/lumefantrine.

<span class="mw-page-title-main">Artesunate</span> Chemical compound

Artesunate (AS) is a medication used to treat malaria. The intravenous form is preferred to quinine for severe malaria. Often it is used as part of combination therapy, such as artesunate plus mefloquine. It is not used for the prevention of malaria. Artesunate can be given by injection into a vein, injection into a muscle, by mouth, and by rectum.

<i>Plasmodium vivax</i> Species of single-celled organism

Plasmodium vivax is a protozoal parasite and a human pathogen. This parasite is the most frequent and widely distributed cause of recurring malaria. Although it is less virulent than Plasmodium falciparum, the deadliest of the five human malaria parasites, P. vivax malaria infections can lead to severe disease and death, often due to splenomegaly. P. vivax is carried by the female Anopheles mosquito; the males do not bite.

<span class="mw-page-title-main">Dihydroartemisinin</span> Drug used to treat malaria

Dihydroartemisinin is a drug used to treat malaria. Dihydroartemisinin is the active metabolite of all artemisinin compounds and is also available as a drug in itself. It is a semi-synthetic derivative of artemisinin and is widely used as an intermediate in the preparation of other artemisinin-derived antimalarial drugs. It is sold commercially in combination with piperaquine and has been shown to be equivalent to artemether/lumefantrine.

<span class="mw-page-title-main">History of malaria</span> History of malaria infections

The history of malaria extends from its prehistoric origin as a zoonotic disease in the primates of Africa through to the 21st century. A widespread and potentially lethal human infectious disease, at its peak malaria infested every continent except Antarctica. Its prevention and treatment have been targeted in science and medicine for hundreds of years. Since the discovery of the Plasmodium parasites which cause it, research attention has focused on their biology as well as that of the mosquitoes which transmit the parasites.

<span class="mw-page-title-main">Piperaquine</span> Chemical compound

Piperaquine is an antiparasitic drug used in combination with dihydroartemisinin to treat malaria. Piperaquine was developed under the Chinese National Malaria Elimination Programme in the 1960s and was adopted throughout China as a replacement for the structurally similar antimalarial drug chloroquine. Due to widespread parasite resistance to piperaquine, the drug fell out of use as a monotherapy, and is instead used as a partner drug for artemisinin combination therapy. Piperaquine kills parasites by disrupting the detoxification of host heme.

<span class="mw-page-title-main">Arterolane</span> Chemical compound

Arterolane, also known as OZ277 or RBx 11160, is a substance that was tested for antimalarial activity by Ranbaxy Laboratories. It was discovered by US and European scientists who were coordinated by the Medicines for Malaria Venture (MMV). Its molecular structure is uncommon for pharmacological compounds in that it has both an ozonide (trioxolane) group and an adamantane substituent.

<span class="mw-page-title-main">Cipargamin</span> Chemical compound

Cipargamin is an experimental synthetic antimalarial drug belonging to the spiroindolone class. The compound was developed at the Novartis Institute for Tropical Diseases in Singapore, through a collaboration with the Genomics Institute of the Novartis Research Foundation (GNF), the Biomedical Primate Research Centre and the Swiss Tropical Institute.

Pregnancy-associated malaria (PAM) or placental malaria is a presentation of the common illness that is particularly life-threatening to both mother and developing fetus. PAM is caused primarily by infection with Plasmodium falciparum, the most dangerous of the four species of malaria-causing parasites that infect humans. During pregnancy, a woman faces a much higher risk of contracting malaria and of associated complications. Prevention and treatment of malaria are essential components of prenatal care in areas where the parasite is endemic – tropical and subtropical geographic areas. Placental malaria has also been demonstrated to occur in animal models, including in rodent and non-human primate models.

<span class="mw-page-title-main">Leann Tilley</span> Australian biochemist and microbiologist

Leann Tilley is Professor of Biochemistry and Molecular Biology in the Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne.

Adrianus Mattheus Dondorp is a Dutch intensivist, infectious diseases physician, and head of the Mahidol Oxford Tropical Medicine Research Unit in Bangkok. He is best known for his research in severe falciparum malaria, a disease that requires intensive care in hospital. He chairs the World Health Organization Technical Expert Group on antimalarial medication drug resistance and containment.

Moses R Kamya, is a Ugandan physician, academic, researcher and academic administrator, who serves as Professor and Chair of the Department Medicine, Makerere University School of Medicine, a component of Makerere University College of Health Sciences.

<span class="mw-page-title-main">Abdoulaye Djimdé</span>

Abdoulaye Djimdé is an associate professor of Microbiology and Immunology in Mali. He works on the genetic epidemiology of antimalarial drug resistance and is a Wellcome Sanger Institute International Fellow. He is Chief of the Molecular Epidemiology and Drug Resistance Unit at the University of Bamako Malaria Research and Training Centre.

<span class="mw-page-title-main">Elizabeth A. Winzeler</span> American microbiologist

Elizabeth Ann Winzeler is an American microbiologist and geneticist. She is a professor in the Division of Host-Microbe Systems and Therapeutics of the School of Medicine at the University of California at San Diego. Although she works in a variety of different disease areas, most research focuses on developing better medicines for the treatment and eradication of malaria.

Elizabeth Ashley is a British physician who is Director of the Laos-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU) in Laos. She specialises in infectious diseases and medical microbiology and virology. She is an associate editor for the Malaria Journal and serves on the Council of the International Society for Infectious Diseases.

References

  1. "Faculty - David A. Fidock". Department of Microbiology & Immunology -US. Retrieved 2022-01-04.
  2. 1 2 3 4 5 "David A. Fidock, PhD". Vagelos College of Physicians and Surgeons. 2017-06-12. Retrieved 2022-01-04.
  3. "David Fidock". scholar.google.com. Retrieved 2022-01-04.
  4. 1 2 "David A. Fidock, PhD". Columbia University. 12 June 2017. Retrieved 2022-01-04.
  5. "David Fidock". Delgeme. Archived from the original on 2022-07-21. Retrieved 2022-01-04.
  6. "Welcome Message from our President, Dr. Mahalia Desruisseaux" (PDF). ASTMH. 2021.
  7. 1 2 3 4 5 6 7 8 9 10 11 12 13 "David Fidock". The Fidock Lab. Retrieved 2023-12-01.
  8. 1 2 3 4 5 6 7 "MMV awards Project of the Year 2020 to Professor David Fidock and team for critical contribution to malaria drug resistance profiling | Medicines for Malaria Venture". www.mmv.org. 18 December 2020. Retrieved 2022-01-04.
  9. Blasco, Benjamin; Leroy, Didier; Fidock, David A (2017-08-04). "Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic". Nature Medicine. 23 (8): 917–928. doi:10.1038/nm.4381. ISSN   1078-8956. PMC   5747363 . PMID   28777791.
  10. Miguel-Blanco, Celia; Murithi, James M.; Benavente, Ernest Diez; Angrisano, Fiona; Sala, Katarzyna A.; van Schalkwyk, Donelly A.; Vanaerschot, Manu; Schwach, Frank; Fuchter, Matthew J.; Billker, Oliver; Sutherland, Colin J. (2021-01-21). "The antimalarial efficacy and mechanism of resistance of the novel chemotype DDD01034957". Scientific Reports. 11 (1): 1888. doi:10.1038/s41598-021-81343-z. ISSN   2045-2322. PMC   7820608 . PMID   33479319.
  11. Duffey, Maëlle; Blasco, Benjamin; Burrows, Jeremy N.; Wells, Timothy N. C.; Fidock, David A.; Leroy, Didier (2021-08-01). "Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials". Trends in Parasitology. 37 (8): 709–721. doi:10.1016/j.pt.2021.04.006. ISSN   1471-4922. PMC   8282644 . PMID   34001441.
  12. Ekland, Eric H.; Fidock, David A. (August 2007). "Advances in understanding the genetic basis of antimalarial drug resistance". Current Opinion in Microbiology. 10 (4): 363–370. doi:10.1016/j.mib.2007.07.007. ISSN   1369-5274. PMC   2080794 . PMID   17709280.
  13. Miguel-Blanco, Celia; Murithi, James M.; Benavente, Ernest Diez; Angrisano, Fiona; Sala, Katarzyna A.; van Schalkwyk, Donelly A.; Vanaerschot, Manu; Schwach, Frank; Fuchter, Matthew J.; Billker, Oliver; Sutherland, Colin J. (2021-01-21). "The antimalarial efficacy and mechanism of resistance of the novel chemotype DDD01034957". Scientific Reports. 11 (1): 1888. doi:10.1038/s41598-021-81343-z. ISSN   2045-2322. PMC   7820608 . PMID   33479319.
  14. 1 2 "MMV awards Project of the Year 2020 to Professor David Fidock and team for critical contribution to malaria drug resistance profiling - Medicines for Malaria Venture". www.mmv.org. 18 December 2020. Retrieved 2022-03-16.
  15. 1 2 3 4 5 6 7 "David Fidock". Advance The Global Australian Network. Retrieved 2023-12-01.
  16. 1 2 3 4 5 "astmh.org" (PDF).
  17. Mok, Sachel; Fidock, David A. (2023-10-16). "Determinants of piperaquine-resistant malaria in South America". The Lancet. Infectious Diseases: S1473–3099(23)00564–9. doi: 10.1016/S1473-3099(23)00564-9 . ISSN   1474-4457. PMID   37858324.
  18. Murithi, James M.; Deni, Ioanna; Pasaje, Charisse Flerida A.; Okombo, John; Bridgford, Jessica L.; Gnädig, Nina F.; Edwards, Rachel L.; Yeo, Tomas; Mok, Sachel; Burkhard, Anna Y.; Coburn-Flynn, Olivia (2021-07-06). "The Plasmodium falciparum ABC transporter ABCI3 confers parasite strain-dependent pleiotropic antimalarial drug resistance". Cell Chemical Biologyglish. 29 (5): S2451-9456(21)00305–6. doi:10.1016/j.chembiol.2021.06.006. ISSN   2451-9456. PMC   8727639 . PMID   34233174.
  19. Stokes, Barbara H; Dhingra, Satish K; Rubiano, Kelly; Mok, Sachel; Straimer, Judith; Gnädig, Nina F; Deni, Ioanna; Schindler, Kyra A; Bath, Jade R; Ward, Kurt E; Striepen, Josefine (2021-07-19). Soldati-Favre, Dominique (ed.). "Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness". eLife. 10: e66277. doi: 10.7554/eLife.66277 . ISSN   2050-084X. PMC   8321553 . PMID   34279219.
  20. Vanaerschot, Manu; Murithi, James M.; Pasaje, Charisse Flerida A.; Ghidelli-Disse, Sonja; Dwomoh, Louis; Bird, Megan; Spottiswoode, Natasha; Mittal, Nimisha; Arendse, Lauren B.; Owen, Edward S.; Wicht, Kathryn J. (2020-07-16). "Inhibition of Resistance-Refractory P. falciparum Kinase PKG Delivers Prophylactic, Blood Stage, and Transmission-Blocking Antiplasmodial Activity". Cell Chemical Biologyglish. 27 (7): 806–816.e8. doi:10.1016/j.chembiol.2020.04.001. ISSN   2451-9456. PMC   7369637 . PMID   32359426.
  21. Gnädig, Nina F.; Stokes, Barbara H.; Edwards, Rachel L.; Kalantarov, Gavreel F.; Heimsch, Kim C.; Kuderjavy, Michal; Crane, Audrey; Lee, Marcus C. S.; Straimer, Judith; Becker, Katja; Trakht, Ilya N. (2020-04-20). "Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparum K13". PLOS Pathogens. 16 (4): e1008482. doi: 10.1371/journal.ppat.1008482 . ISSN   1553-7374. PMC   7192513 . PMID   32310999.
  22. Stokes, Barbara H.; Yoo, Euna; Murithi, James M.; Luth, Madeline R.; Afanasyev, Pavel; Fonseca, Paula C. A. da; Winzeler, Elizabeth A.; Ng, Caroline L.; Bogyo, Matthew; Fidock, David A. (2019-06-06). "Covalent Plasmodium falciparum-selective proteasome inhibitors exhibit a low propensity for generating resistance in vitro and synergize with multiple antimalarial agents". PLOS Pathogens. 15 (6): e1007722. doi: 10.1371/journal.ppat.1007722 . ISSN   1553-7374. PMC   6553790 . PMID   31170268.
  23. Dhingra, Satish K.; Small-Saunders, Jennifer L.; Ménard, Didier; Fidock, David A. (2019-11-01). "Plasmodium falciparum resistance to piperaquine driven by PfCRT". The Lancet Infectious Diseasesglish. 19 (11): 1168–1169. doi:10.1016/S1473-3099(19)30543-2. ISSN   1473-3099. PMC   6943240 . PMID   31657776.
  24. Kim, Jonathan; Tan, Yong Zi; Wicht, Kathryn J.; Erramilli, Satchal K.; Dhingra, Satish K.; Okombo, John; Vendome, Jeremie; Hagenah, Laura M.; Giacometti, Sabrina I.; Warren, Audrey L.; Nosol, Kamil (December 2019). "Structure and drug resistance of the Plasmodium falciparum transporter PfCRT". Nature. 576 (7786): 315–320. doi:10.1038/s41586-019-1795-x. ISSN   1476-4687. PMC   6911266 . PMID   31776516.