Don Eyles

Last updated
Don Eyles
NationalityAmerican
Alma mater Boston University, Bachelor of Science, Mathematics - 1966
Known forSaving Apollo 14 mission from abort

Don Eyles [1] is a retired computer engineer who worked on the computer systems in the Apollo Lunar Module vehicle. As a young engineer during the lunar landing on Lunar Module Eagle on 20 July 1969 he assisted with a series of computer alarms caused by data overflow from the radar, which could have caused the mission to be aborted. [2]

Contents

Apollo missions

Eyles was educated at Boston University where he earned a bachelor of science in mathematics. In 1966, at age 23, Eyles was hired by Draper Laboratory. He helped program the onboard computer for the Apollo Guidance Program Section where he worked with MIT, and other researchers, on the Apollo Guidance Computer.

During the Apollo missions Eyles worked on the computer systems, programming for Jack Garman, advising flight controllers in Mission Control on the operation of spacecraft computer systems and prior to the Apollo 11 mission he helped program operations for how flight controllers could react to a computer error code. [3]

There were a number of errors with the computer system during the mission. One was diagnosed as the rendezvous radar being on (which was correct according to the checklist), causing the computer to process data from both the rendezvous and landing radars at the same time. [4] [5] Eyles concluded in a 2005 Guidance and Control Conference paper that the problem was due to a hardware design bug previously seen during testing of the first uncrewed LM in Apollo 5. Having the rendezvous radar on (so that it was warmed up in case of an emergency landing abort) should have been irrelevant to the computer, but an electrical phasing mismatch between two parts of the rendezvous radar system could cause the stationary antenna to appear to the computer as dithering back and forth between two positions, depending upon how the hardware randomly powered up. The extra spurious cycle stealing, as the rendezvous radar updated an involuntary counter, caused the computer alarms. [6]

During the Apollo 14 mission, Eyles assisted when a faulty switch could have sent a spurious command to the onboard computer. According to a Rolling Stone article published in 1971 "The switch tells the on-board computer to reverse the engines — blasting the Module away from the moon, back into orbit. On the Apollo 14 flight, the switch accidentally jammed and would have told the computer to reverse the Module's course despite the fact that the astronauts wanted to complete the descent. "We had to write a new program that would make the computer not see the switch," said Eyles. [7]

Related Research Articles

<span class="mw-page-title-main">Apollo 11</span> First crewed Moon landing

Apollo 11 was the American spaceflight that first landed humans on the Moon. Commander Neil Armstrong and Lunar Module Pilot Buzz Aldrin landed the Apollo Lunar Module Eagle on July 20, 1969, at 20:17 UTC, and Armstrong became the first person to step onto the Moon's surface six hours and 39 minutes later, on July 21 at 02:56 UTC. Aldrin joined him 19 minutes later, and they spent about two and a quarter hours together exploring the site they had named Tranquility Base upon landing. Armstrong and Aldrin collected 47.5 pounds (21.5 kg) of lunar material to bring back to Earth as pilot Michael Collins flew the Command Module Columbia in lunar orbit, and were on the Moon's surface for 21 hours, 36 minutes before lifting off to rejoin Columbia.

<span class="mw-page-title-main">Apollo program</span> 1961–1972 American crewed lunar exploration program

The Apollo program, also known as Project Apollo, was the United States human spaceflight program carried out by the National Aeronautics and Space Administration (NASA), which succeeded in preparing and landing the first humans on the Moon from 1968 to 1972. It was first conceived in 1960 during President Dwight D. Eisenhower's administration as a three-person spacecraft to follow the one-person Project Mercury, which put the first Americans in space. Apollo was later dedicated to President John F. Kennedy's national goal for the 1960s of "landing a man on the Moon and returning him safely to the Earth" in an address to Congress on May 25, 1961. It was the third US human spaceflight program to fly, preceded by the two-person Project Gemini conceived in 1961 to extend spaceflight capability in support of Apollo.

<span class="mw-page-title-main">Apollo 13</span> Failed Moon landing mission in the Apollo program

Apollo 13 was the seventh crewed mission in the Apollo space program and the third meant to land on the Moon. The craft was launched from Kennedy Space Center on April 11, 1970, but the lunar landing was aborted after an oxygen tank in the service module (SM) failed two days into the mission. The crew instead looped around the Moon in a circumlunar trajectory and returned safely to Earth on April 17. The mission was commanded by Jim Lovell, with Jack Swigert as command module (CM) pilot and Fred Haise as Lunar Module (LM) pilot. Swigert was a late replacement for Ken Mattingly, who was grounded after exposure to rubella.

<span class="mw-page-title-main">Apollo 7</span> First crewed flight of the Apollo space program

Apollo 7 was the first crewed flight in NASA's Apollo program, and saw the resumption of human spaceflight by the agency after the fire that had killed the three Apollo 1 astronauts during a launch rehearsal test on January 27, 1967. The Apollo 7 crew was commanded by Walter M. Schirra, with command module pilot Donn F. Eisele and lunar module pilot R. Walter Cunningham.

<span class="mw-page-title-main">Apollo 9</span> 3rd crewed mission of the Apollo space program

Apollo 9 was the third human spaceflight in NASA's Apollo program. Flown in low Earth orbit, it was the second crewed Apollo mission that the United States launched via a Saturn V rocket, and was the first flight of the full Apollo spacecraft: the command and service module (CSM) with the Lunar Module (LM). The mission was flown to qualify the LM for lunar orbit operations in preparation for the first Moon landing by demonstrating its descent and ascent propulsion systems, showing that its crew could fly it independently, then rendezvous and dock with the CSM again, as would be required for the first crewed lunar landing. Other objectives of the flight included firing the LM descent engine to propel the spacecraft stack as a backup mode, and use of the portable life support system backpack outside the LM cabin.

<span class="mw-page-title-main">Apollo 10</span> Second crewed mission to orbit the Moon

Apollo 10 was the fourth human spaceflight in the United States' Apollo program and the second to orbit the Moon. NASA, the mission's operator, described it as a "dress rehearsal" for the first Moon landing. It was designated an "F" mission, intended to test all spacecraft components and procedures short of actual descent and landing.

<span class="mw-page-title-main">Apollo 14</span> Third crewed Moon landing

Apollo 14 was the eighth crewed mission in the United States Apollo program, the third to land on the Moon, and the first to land in the lunar highlands. It was the last of the "H missions", landings at specific sites of scientific interest on the Moon for two-day stays with two lunar extravehicular activities.

<span class="mw-page-title-main">Apollo Lunar Module</span> NASA crewed Moon landing spacecraft (1969–1972)

The Apollo Lunar Module, originally designated the Lunar Excursion Module (LEM), was the lunar lander spacecraft that was flown between lunar orbit and the Moon's surface during the United States' Apollo program. It was the first crewed spacecraft to operate exclusively in the airless vacuum of space, and remains the only crewed vehicle to land anywhere beyond Earth.

<span class="mw-page-title-main">Apollo Guidance Computer</span> Guidance and navigation computer used in Apollo spacecraft

The Apollo Guidance Computer (AGC) was a digital computer produced for the Apollo program that was installed on board each Apollo command module (CM) and Apollo Lunar Module (LM). The AGC provided computation and electronic interfaces for guidance, navigation, and control of the spacecraft. The AGC was the first computer based on silicon integrated circuits. The computer's performance was comparable to the first generation of home computers from the late 1970s, such as the Apple II, TRS-80, and Commodore PET.

<span class="mw-page-title-main">Apollo 5</span> First uncrewed test flight of the Apollo Lunar Module

Apollo 5, also known as AS-204, was the uncrewed first flight of the Apollo Lunar Module (LM) that would later carry astronauts to the surface of the Moon. The Saturn IB rocket bearing the LM lifted off from Cape Kennedy on January 22, 1968. The mission was successful, though due to programming problems an alternate mission to that originally planned was executed.

<span class="mw-page-title-main">Apollo (spacecraft)</span> Saturn V-launched payload that took men to the Moon

The Apollo spacecraft was composed of three parts designed to accomplish the American Apollo program's goal of landing astronauts on the Moon by the end of the 1960s and returning them safely to Earth. The expendable (single-use) spacecraft consisted of a combined command and service module (CSM) and an Apollo Lunar Module (LM). Two additional components complemented the spacecraft stack for space vehicle assembly: a spacecraft–LM adapter (SLA) designed to shield the LM from the aerodynamic stress of launch and to connect the CSM to the Saturn launch vehicle and a launch escape system (LES) to carry the crew in the command module safely away from the launch vehicle in the event of a launch emergency.

<span class="mw-page-title-main">Project Gemini</span> 1961–1966 US human spaceflight program

Project Gemini was the second United States human spaceflight program to fly. Conducted after the first, Project Mercury, and while the Apollo program was still in development, Gemini was conceived in 1961 and concluded in 1966. The Gemini spacecraft carried a two-astronaut crew. Ten Gemini crews and 16 individual astronauts flew low Earth orbit (LEO) missions during 1965 and 1966.

<span class="mw-page-title-main">Apollo PGNCS</span> Apollo spacecraft guidance system

The Apollo primary guidance, navigation, and control system was a self-contained inertial guidance system that allowed Apollo spacecraft to carry out their missions when communications with Earth were interrupted, either as expected, when the spacecraft were behind the Moon, or in case of a communications failure. The Apollo command module (CM) and lunar module (LM), were each equipped with a version of PGNCS. PGNCS, and specifically its computer, were also the command center for all system inputs from the LM, including the alignment optical telescope, the radar system, the manual translation and rotation device inputs by the astronauts as well as other inputs from the LM systems.

<span class="mw-page-title-main">Space capsule</span> Type of spacecraft

A space capsule is a spacecraft designed to transport cargo, scientific experiments, and/or astronauts to and from space. Capsules are distinguished from other spacecraft by the ability to survive reentry and return a payload to the Earth's surface from orbit, and are distinguished from other types of recoverable spacecraft by their blunt shape, not having wings and often containing little fuel other than what is necessary for a safe return. Capsule-based crewed spacecraft such as Soyuz or Orion are often supported by a service or adapter module, and sometimes augmented with an extra module for extended space operations. Capsules make up the majority of crewed spacecraft designs, although one crewed spaceplane, the Space Shuttle, has flown in orbit.

<span class="mw-page-title-main">Flight controller</span> Person who aids in spaceflight activities

Flight controllers are personnel who aid space flight by working in such Mission Control Centers as NASA's Mission Control Center or ESA's European Space Operations Centre. Flight controllers work at computer consoles and use telemetry to monitor various technical aspects of a space mission in real-time. Each controller is an expert in a specific area and constantly communicates with additional experts in the "back room". The flight director, who leads the flight controllers, monitors the activities of a team of flight controllers, and has overall responsibility for success and safety.

<span class="mw-page-title-main">Lunar escape systems</span> Series of proposed emergency spacecraft for the Apollo Program

Lunar escape systems (LESS) were a series of emergency vehicles designed for never-flown long-duration Apollo missions. Because these missions were more hypothetical than the planned cancelled Apollo missions, the designs were never constructed. This concept was an outgrowth of the Lunar Flying Vehicle by Bell Aerospace.

<span class="mw-page-title-main">Steve Bales</span>

Steve Bales is a former NASA engineer and flight controller. He is best known for his role during the Apollo 11 lunar landing.

<span class="mw-page-title-main">Jack Garman</span>

John Royer "Jack" Garman was a computer engineer, former senior NASA executive and noted key figure of the Apollo 11 lunar landing. As a young specialist on duty during the final descent stage on 20 July 1969 he dealt with a series of computer alarms which could have caused the mission to be aborted.

<span class="mw-page-title-main">Apollo Abort Guidance System</span> Backup system for Apollo PGNCS

The Apollo Abort Guidance System was a backup computer system providing an abort capability in the event of failure of the Lunar Module's primary guidance system during descent, ascent or rendezvous. As an abort system, it did not support guidance for a lunar landing.

<span class="mw-page-title-main">J. Halcombe Laning</span> American computer engineer

J. Halcombe "Hal" Laning Jr. was a Massachusetts Institute of Technology computer pioneer who in 1952 invented an algebraic compiler called George that ran on the MIT Whirlwind, the first real-time computer. Laning designed George to be an easier-to-use alternative to assembly language for entering mathematical equations into a computer. He later became a key contributor to the 1960s race to the Moon, with pioneering work on space-based guidance systems for the Apollo Moon missions. From 1955 to 1980, he was deputy associate director of the MIT Instrumentation Laboratory.

References

  1. Eyles, Don (1 January 2018). Sunburst and Luminary: An Apollo Memoir. Fort Point Press. ISBN   9780986385902 . Retrieved 17 July 2019 via Google Books.
  2. Don Eyles, Tales From the Lunar Module Guidance Computer, doneyles.com; accessed 21 September 2016.
  3. Hotz, Robert (July 14, 2019). "Apollo 11 Had a Hidden Hero: Software". The Wall Street Journal . Retrieved July 18, 2019.
  4. Mission Evaluation Team (November 1969). Apollo 11 Mission Report (PDF). Houston, Texas: NASA Manned Spacecraft Center. pp. 190–192. OCLC   10970862. SP-238. Retrieved January 1, 2019.
  5. Martin, Fred H. (July 1994). "Apollo 11: 25 Years Later". Apollo 11 Lunar Surface Journal. NASA. Retrieved June 13, 2013.
  6. Eyles, Don (February 6, 2004). "Tales from the Lunar Module Guidance Computer". 27th annual Guidance and Control Conference. Breckenridge, Colorado: American Astronautical Society . Retrieved June 13, 2013.
  7. Don Eyles: Extra! Weird-Looking Freak Saves Apollo 14!, rollingstone.com; accessed July 17, 2019.