Gee-H (navigation)

Last updated

Gee-H, sometimes written G-H or GEE-H, was a radio navigation system developed by Britain during the Second World War to aid RAF Bomber Command. The name refers to the system's use of the earlier Gee equipment, as well as its use of the "H principle" or "twin-range principle" of location determination. [1] Its official name was AMES Type 100.

Contents

Gee-H was used to supplant the Oboe bombing system which worked along similar lines. By measuring and keeping a fixed distance to a radio station, the bomber could navigate along an arc in the sky. The bombs were dropped when they reached a set distance from a second station. The main difference between Oboe and Gee-H was the location of the equipment; Oboe used large displays in ground stations to take very accurate measurements but could only direct one aircraft at a time. Gee-H used much smaller systems on aircraft and while somewhat less accurate, could direct as many as eighty aircraft at a time.

Gee-H entered service in October 1943 and first used successfully in November against the Mannesmann steel works at Düsseldorf on the night of 1/2 November, when about half of the sets failed leaving only 15 aircraft to bomb the factory. Gee-H remained in use throughout the war, although it was subject to considerable jamming from the Germans. It also remained a standard fixture of post-war RAF aircraft like the English Electric Canberra. Gee-H was adapted by RCA into the US wartime SHORAN system with improved accuracy. The same basic concept remains in widespread use today as the civilian DME system.

Development history

Distance measuring navigation

Determining your location in 2D space requires two measurements of angle or range - two angle measurements, two distance measurements, or one angle and one distance. Early radio navigation was typically based on taking two angle measurements using radio direction finders, but these were accurate only to a few degrees and only provided accuracy on the order of tens of miles. The development of range-based systems had to wait until the invention of accurate time measurement of radio signals were possible, which came about as a result of the development of radar. [2]

The Luftwaffe pioneered the use of distance-measuring radio navigation systems with their Y-Gerät system in 1941. Y-Gerät used a Knickebein -like beam for steering the bomber in the proper direction and an onboard transponder for distance measurements. A special signal was periodically sent from a ground station, and on reception, the transponder would send out an answering pulse after a known delay. A ground operator used an oscilloscope to measure the time between broadcast and reception and deduced the range in a fashion similar to conventional radar systems. He then radioed this information to the bomber by voice, telling them when to release their bombs. [3]

A failing of the beam-type system of navigation is that the beams cannot be focused perfectly and in practice are fan-shaped, growing wider with distance from the broadcaster, accuracy falling with range. [4] Measurements of distance are dependent only on the accuracy of the equipment, and are independent of range. This means their accuracy is a fixed percentage of the measurement, and so is linear with range. It is possible to use two measurements to provide a location fix, but such systems are generally difficult to use, as they require two range measurements to be made in quick succession, while the aircraft is moving. [5]

Oboe

The Air Ministry developed a distance-measuring system known as Oboe which first started reaching the Pathfinder Force in late 1941 and was used experimentally in 1942. Oboe avoided the problems with two distance measurements by using only one at a time. Before the mission, the distance from one of the Oboe stations to the target was measured and an arc of that radius drawn on a conventional navigation chart. For instance, for an attack on a target in Düsseldorf, the distance between the Oboe station near Walmer and the target would be about 235 mi (378 km); an arc with a 235 mi (378 km) radius around the station would be drawn, passing through Düsseldorf. [6] Now the "range" of the bombs being dropped would be calculated, the distance between the point where the bombs are released and the point that they hit. For missions around 20,000 ft (6,100 m) in height, range is typically on the order of 1.5 mi (2.4 km) for a high-speed aircraft like the de Havilland Mosquito. The planners would calculate the place along the arc where the bombs would need to be dropped to hit the target. This calculation, carried out on the ground, could be as time-consuming as required, allowing for the consideration of winds, atmospheric pressure, even the tiny centrifugal force generated by the aircraft following the 235 mi (378 km) radius curve. [6]

During the sortie, the bomber crew would fly to one end of the arc using any means of navigation including dead reckoning. When they were near the location, the transponder was switched on and the Oboe station would measure their distance. This "cat" station would then send out a voice-frequency radio signal of either dots or dashes, allowing the pilot to adjust the path to be at the right distance, where the transmission would be a steady tone, the "equisignal". [6] Operators would watch the position of the aircraft, sending out correcting signals as needed so the pilot could adjust the path along the arc.

A second station would also measure the distance to the bomber. This station was equipped with the bomb's range value calculated earlier and had used this to calculate the distance between their station and the bomber at the point where the bombs should be dropped. When this mouse station saw the bomber approaching the drop point, it sent Morse code signals to inform the pilot that the drop point was approaching. At the right moment, it would send another morse signal that would drop the bombs automatically. [6]

The main constraint with Oboe was that it could only be used by one aircraft at a time. As it took about ten minutes for the bomber to get onto the arc, this delay meant that the system could not be used for a large raid with aircraft in succession. Oboe was used to guide the target marking aircraft of the pathfinder force, giving the Main Force bombers an accurate aiming point in any weather. Oboe was sometimes used for attacks on precision targets by one or a small number of aircraft dropping one after the other. In tests, Oboe demonstrated accuracies greater than those of optical bombsights during daylight in good weather. [7]

A new approach

Oboe was limited to one aircraft because the onboard transponder would send pulses every time the ground stations queried them. If more than one aircraft turned on their transponder, the ground stations would start to receive several return pulses for every query, with no way to distinguish between them. One solution to this problem is to have each Oboe station send out a slightly different signal, normally by changing the envelope of the signal it broadcasts to the aircraft. Similar stations with different signal modifications can be situated around the UK, so that all of them are visible to an aircraft over Germany. An aircraft that turns on its transponder will receive and re-transmit signals from all of them. Although all of the ground stations will receive all of the signals, they can pick out their own by looking for their unique signal. This change allows many Oboe stations to be operational at the same time, although it does not help the situation if more than one aircraft turns on their transponder. Swapping the transmitters and receivers, so that the receiver is on the aircraft and the transmitter on the ground means that each aircraft generates a different signal pattern, and the operators on the aircraft can look for their own signal and ignore the others. Any number of aircraft can use the same station at the same time. As long as the ground station is equipped to quickly turn the signals around and the aircraft do not query too often, the chance of more than one aircraft querying the station at the very same time is low. This is the basic concept behind Gee-H. [8]

Gee-H

G-H Leader Avro Lancaster B Mark III of 467 Squadron RAAF as it begins its take-off run at RAF Waddington, August 1944 Avro Lancaster - Waddington - Aircraft of the Royal Air Force in the Second World War 1939-1945 MH6448.jpg
G–H Leader Avro Lancaster B Mark III of 467 Squadron RAAF as it begins its take-off run at RAF Waddington, August 1944

The first radio navigation system to be operated by Bomber Command was Gee. This operated by sending out two pulses of known timing from ground stations which were picked up by the aircraft and read on an oscilloscope. The timing between transmissions was not fixed and varied from station to station, so the equipment in the bomber had a system that allowed it to adjust for this. [9] The receiver had a local oscillator that provided a time base generator that could be adjusted. When the receiver was first turned on, the pulses from the ground station would move across the display because the two time bases were not synchronized. The operator then tuned their oscillator until the pulses stopped moving, which meant that the local oscillator was now at precisely the same pulse frequency as that in the ground station. The receiver had two systems of this type, allowing the operator to receive signals from two stations and easily compare them and make simultaneous measurements. [9]

Rapidly to deploy the new design, it was decided to use as much of the Gee equipment as possible. Gee already included the oscilloscope display and the receiver unit, so all that was needed was a broadcaster unit that would trigger the ground station transceiver. This was designed to operate on the same frequencies as Gee, so that the existing receiver and display equipment in the bombers could be used. [5] The new transmitter sent out pulses about 100 times a second. The timing of the pulses was slightly advanced or retarded from 100 per second. This meant that every aircraft had a slightly different timing. The same signal was also sent to the Gee display unit to start the display beam moving across the face of the display, instead of using Gee's manually tuned oscillator. This way, the received signals that did not have the same inter-pulse timing would appear to move one way or the other, like a mistuned Gee. Only the signals originating from the aircraft's own transmitter would line up on the display and remain motionless. This deliberate adjustment of the timing was known as "jittering". [5]

The delay from the original Gee was still used; the navigator would first set the delay of the upper trace on the Gee display to a known figure that matched the radius of the arc they wanted to fly along. This would move the "blip" from the local transmitter along the face of the display. Received signals would then be inverted and sent to the display. The navigator could then direct the pilot onto the right path by giving directions until the upper and lower blips aligned. The same was done for the second channel, setting it to the computed range where the bombs should be dropped. Since they stayed the same distance from one station the operator only had to check that periodically, while watching the ever-moving lower trace as the active blip moved slowly along the display towards the timer blip until they overlapped and the bombs were dropped. [10]

The time taken by the transceiver to receive a pulse, send out the response and return to the receiving condition was about 100 microseconds. With a pulse timing of about 100 a second, a transceiver would be busy for 10 ms out of every second responding to the signals from any one aircraft. This would leave 990 ms free to respond to other aircraft, giving a theoretical capacity of 100 aircraft. In practice, due to the "jitter", about 70 to 80 aircraft could use a station at a time. [10]

The system had the additional advantage that each aircraft selected its timing, which made jamming harder. With most pulsed navigation systems like Gee and Y-Gerät, it is relatively easy to jam the system simply by sending out additional pulses on the same frequency, cluttering up the display and making it very difficult for the operator to read the signal. The British had used this technique to great effect against Y-Gerät, and the Germans returned the favour against Gee. By the late war period, Gee was generally useless for bombing and used primarily as a navigational aid when returning to England. [11]

In the case of Gee-H, each aircraft had unique timing; to jam the receiver, the jammer would also have to have similar timing. As one signal might be used by dozens of aircraft, dozens of jammers set to slightly different times would be needed. As there were dozens of transceivers as well, many unused decoy signals, the magnitude of the jamming problem was considerably worse. [11] As the Gee-H system used Gee equipment, turning off the interrogation transmitter turned it back into a normal Gee unit. On a typical mission, the set would be used for Gee while leaving England and forming up into a bomber stream, for Gee-H during the mission and back to Gee on the return flight for finding its airbase. Since Gee could be directly read on a map, it was extremely useful for general navigation, while Gee-H was only practically used to navigate to one place. [11]

Gee-H's main fault was caused by using Gee equipment; using a higher frequency would allow a tighter envelope, which would allow more accurate timing measurements and thus improve accuracy. Because the system used Gee's small oscilloscope for measurements, it did not have the same visual accuracy as Oboe, which used 12-inch oscilloscopes developed specifically for this purpose. Gee-H achieved accuracy of about 150 yd (140 m) at 300 mi (480 km), while Oboe was good to about 50 yd (46 m). As with all VHF and UHF-based systems, Gee-H was limited to distances just out of line of sight, in this case limiting it to about 300 mi (480 km). [5]

Gee-H was used in Operation Glimmer, a diversionary "attack" during Operation Overlord that diverted German defences at Calais while the real invasion fleet was 200 mi (320 km) away at Normandy. Gee-H-equipped bombers of 218 Squadron flew low, in tight circles, dropping Window (chaff) over radar transponder-equipped small ships, to deceive the German radars that they were the main invasion fleet. [12]

Air Ministry designations

See also

Related Research Articles

<span class="mw-page-title-main">Loran-C</span> Radio navigation system

Loran-C is a hyperbolic radio navigation system that allows a receiver to determine its position by listening to low frequency radio signals that are transmitted by fixed land-based radio beacons. Loran-C combined two different techniques to provide a signal that was both long-range and highly accurate, features that had been incompatible. Its disadvantage was the expense of the equipment needed to interpret the signals, which meant that Loran-C was used primarily by militaries after it was introduced in 1957.

<span class="mw-page-title-main">Radio navigation</span> Use of radio-frequency electromagnetic waves to determine position on the Earths surface

Radio navigation or radionavigation is the application of radio frequencies to determine a position of an object on the Earth, either the vessel or an obstruction. Like radiolocation, it is a type of radiodetermination.

The Battle of the Beams was a period early in the Second World War when bombers of the German Air Force (Luftwaffe) used a number of increasingly accurate systems of radio navigation for night bombing in the United Kingdom. British scientific intelligence at the Air Ministry fought back with a variety of their own increasingly effective means, involving jamming and deception signals. The period ended when the Wehrmacht moved their forces to the East in May 1941, in preparation for the attack on the Soviet Union.

<span class="mw-page-title-main">Omega (navigation system)</span> First global radio navigation system for aircraft

OMEGA was the first global-range radio navigation system, operated by the United States in cooperation with six partner nations. It was a hyperbolic navigation system, enabling ships and aircraft to determine their position by receiving very low frequency (VLF) radio signals in the range 10 to 14 kHz, transmitted by a global network of eight fixed terrestrial radio beacons, using a navigation receiver unit. It became operational around 1971 and was shut down in 1997 in favour of the Global Positioning System.

<span class="mw-page-title-main">Gee (navigation)</span> Radio navigation system

Gee, sometimes written GEE, was a radio-navigation system used by the Royal Air Force during World War II. It measured the time delay between two radio signals to produce a fix, with accuracy on the order of a few hundred metres at ranges up to about 350 miles (560 km). It was the first hyperbolic navigation system to be used operationally, entering service with RAF Bomber Command in 1942.

<span class="mw-page-title-main">Distance measuring equipment</span> Radio navigation technology used in aviation

In aviation, distance measuring equipment (DME) is a radio navigation technology that measures the slant range (distance) between an aircraft and a ground station by timing the propagation delay of radio signals in the frequency band between 960 and 1215 megahertz (MHz). Line-of-visibility between the aircraft and ground station is required. An interrogator (airborne) initiates an exchange by transmitting a pulse pair, on an assigned 'channel', to the transponder ground station. The channel assignment specifies the carrier frequency and the spacing between the pulses. After a known delay, the transponder replies by transmitting a pulse pair on a frequency that is offset from the interrogation frequency by 63 MHz and having specified separation.

<span class="mw-page-title-main">H2S (radar)</span> First airborne, ground scanning radar system WWII

H2S was the first airborne, ground scanning radar system. It was developed for the Royal Air Force's Bomber Command during World War II to identify targets on the ground for night and all-weather bombing. This allowed attacks outside the range of the various radio navigation aids like Gee or Oboe, which were limited to about 350 kilometres (220 mi) of range from various base stations. It was also widely used as a general navigation system, allowing landmarks to be identified at long range.

<span class="mw-page-title-main">Oboe (navigation)</span> British bomb aiming system

Oboe was a British bomb aiming system developed to allow their aircraft to bomb targets accurately in any type of weather, day or night. Oboe coupled radar tracking with radio transponder technology. The guidance system used two well-separated radar stations to track the aircraft. Two circles were created before the mission, one around each station, such that they intersected at the bomb drop point. The operators used the radars, aided by transponders on the aircraft, to guide the bomber along one of the two circles and drop the bombs when they reached the intersection.

<span class="mw-page-title-main">Tactical air navigation system</span> Military navigation system

A tactical air navigation system, commonly referred to by the acronym TACAN, is a navigation system used by military aircraft. It provides the user with bearing and distance to a ground or ship-borne station. It is from an end-user perspective a more accurate version of the VOR/DME system that provides bearing and range information for civil aviation. The DME portion of the TACAN system is available for civil use; at VORTAC facilities where a VOR is combined with a TACAN, civil aircraft can receive VOR/DME readings. Aircraft equipped with TACAN avionics can use this system for enroute navigation as well as non-precision approaches to landing fields.

<span class="mw-page-title-main">Satellite navigation</span> Use of satellite signals for geo-spatial positioning

A satellite navigation or satnav system is a system that uses satellites to provide autonomous geopositioning. A satellite navigation system with global coverage is termed global navigation satellite system (GNSS). As of 2023, five global systems are operational: the United States's Global Positioning System (GPS), Russia's Global Navigation Satellite System (GLONASS), India's Indian Regional Navigation Satellite System (IRNSS), China's BeiDou Navigation Satellite System (BDS), and the European Union's Galileo.

<span class="mw-page-title-main">Secondary surveillance radar</span> Radar system used in air traffic control

Secondary surveillance radar (SSR) is a radar system used in air traffic control (ATC), that unlike primary radar systems that measure the bearing and distance of targets using the detected reflections of radio signals, relies on targets equipped with a radar transponder, that reply to each interrogation signal by transmitting encoded data such as an identity code, the aircraft's altitude and further information depending on its chosen mode. SSR is based on the military identification friend or foe (IFF) technology originally developed during World War II; therefore, the two systems are still compatible. Monopulse secondary surveillance radar (MSSR), Mode S, TCAS and ADS-B are similar modern methods of secondary surveillance.

<span class="mw-page-title-main">SHORAN</span> Type of aircraft navigation and bombing system

SHORAN is an acronym for SHOrt RAnge Navigation, a type of electronic navigation and bombing system using a precision radar beacon. It was developed during World War II and the first stations were set up in Europe as the war was ending, and was operational with Martin B26 Marauders based in Corsica, and later based in Dijon and in B26's given to the South African Airforce in Italy. The first 10/10 zero visibility bombing was over Germany in March 1945. It saw its first combat use in the B-25, B-26 and B-29 bomber aircraft during the Korean War.

<span class="mw-page-title-main">Rebecca/Eureka transponding radar</span> World War II airborne radio transponder system

The Rebecca/Eureka transponding radar was a short-range radio navigation system used for the dropping of airborne forces and their supplies. It consisted of two parts, the Rebecca airborne transceiver and antenna system, and the Eureka ground-based transponder. Rebecca calculated the range to the Eureka based on the timing of the return signals, and its relative position using a highly directional antenna. The 'Rebecca' name comes from the phrase "Recognition of beacons". The 'Eureka' name comes from the Greek word meaning "I have found it!".

<span class="mw-page-title-main">Bombsight</span> Aircraft system for aiming bombs

A bombsight is a device used by military aircraft to drop bombs accurately. Bombsights, a feature of combat aircraft since World War I, were first found on purpose-designed bomber aircraft and then moved to fighter-bombers and modern tactical aircraft as those aircraft took up the brunt of the bombing role.

UB.109T, better known as Red Rapier, was a British cruise missile project calling for a system able to deliver a 5,000 lb conventional warhead within 100 yards of its target at over 400 nautical miles range while travelling at 600 mph (970 km/h) at 50,000 ft (15,000 m).

During World War II, the German Luftwaffe relied on an increasingly diverse array of electronic communications, IFF and RDF equipment as avionics in its aircraft and also on the ground. Most of this equipment received the generic prefix FuG for Funkgerät, meaning "radio equipment". Most of the aircraft-mounted Radar equipment also used the FuG prefix. This article is a list and a description of the radio, IFF and RDF equipment.

<span class="mw-page-title-main">Battle of the Ruhr</span> British bombing campaign during World War II

The Battle of the Ruhr was a strategic bombing campaign against the Ruhr Area in Nazi Germany carried out by RAF Bomber Command during the Second World War. The Ruhr was the main centre of German heavy industry with coke plants, steelworks, armaments factories and ten synthetic oil plants. The British attacked 26 targets identified in the Combined Bomber Offensive. Targets included the Krupp armament works (Essen), the Nordstern synthetic oil plant at Gelsenkirchen and the Rheinmetall–Borsig plant in Düsseldorf, which was evacuated during the battle. The battle included cities such as Cologne not in the Ruhr proper but which were in the larger Rhine-Ruhr region and considered part of the Ruhr industrial complex. Some targets were not sites of heavy industry but part of the production and movement of materiel.

<span class="mw-page-title-main">Hyperbolic navigation</span> Class of obsolete radio navigation systems

Hyperbolic navigation is a class of radio navigation systems in which a navigation receiver instrument is used to determine location based on the difference in timing of radio waves received from radio navigation beacon transmitters.

Green Satin, also known as ARI 5851, was a Doppler radar system developed by the Royal Air Force as an air navigation aid. The system provided direct measures of the drift speed and direction, and thereby allowed accurate calculation of the winds aloft. These values were then fed into the Navigation and Bombing System.

<span class="mw-page-title-main">LORAN</span> Radio navigation system

LORAN, short for long range navigation, was a hyperbolic radio navigation system developed in the United States during World War II. It was similar to the UK's Gee system but operated at lower frequencies in order to provide an improved range up to 1,500 miles (2,400 km) with an accuracy of tens of miles. It was first used for ship convoys crossing the Atlantic Ocean, and then by long-range patrol aircraft, but found its main use on the ships and aircraft operating in the Pacific theater during World War II.

References

Citations

  1. Turner & Roberts, p. 16.
  2. Proc 2012.
  3. Greg Goebel, "Battle of the Beams: Y-GERAET", The Wizard War: WW2 & The Origins Of Radar , 1 March 2011
  4. Brown 1999, p. 288.
  5. 1 2 3 4 Haigh 1960, p. 250.
  6. 1 2 3 4 Haigh 1960, p. 257.
  7. Brown 1999, p. 302.
  8. Visser 2006, p. 65.
  9. 1 2 Haigh 1960, p. 249.
  10. 1 2 Haigh 1960, p. 251.
  11. 1 2 3 Haigh 1960, p. 252.
  12. Freeman Dyson, "A Failure of Intelligence" Bomber Command OR

Bibliography

  • Brown, Louis (1999). A Radar History of World War II: Technical and Military Imperatives. Bristol: Institute of Physics. ISBN   978-0-7503-0659-1.
  • Haigh, J. D. (1960). "Gee-H - AMES 100". The Services Textbook of Radio: Radiolocation Techniques. Vol. VII (online scan ed.). OCLC   504108531.
  • Proc, Jerry (24 October 2012). "The GEE System" . Retrieved 17 January 2022. Adapted from Blanchard, W. F. (September 1991). "Air Navigation Systems Chapter 4. Hyperbolic Airborne Radio Navigation Aids – A Navigator's View of their History and Development". The Journal of Navigation. 44 (3). London: Royal Institute of Navigation: 285–315. doi:10.1017/S0373463300010092. ISSN   0373-4633. S2CID   130079994.
  • Turner, L.; Roberts, A. Radar Beacons. MIT Radiation Lab Series. Vol. III (online scan ed.). Lexington, Mass: Boston Technical Publishers. OCLC   123180755.
  • Visser, Hubregt (2006). Array and Phased Array Antenna Basics. Hoboken, NJ: John Wiley and Sons. ISBN   978-0-470-87118-8.