Generalised cost

Last updated
Corridor Capacity and Infrastructure Costs.png

In transport economics, the generalised cost is the sum of the monetary and non-monetary costs of a journey. [1] [2] It is sometimes used as a basis for judgements of transit accessibility and equitable distribution of public transit resources. [3]

Contents

Monetary (or "out-of-pocket") costs might include a fare on a public transport journey, or the costs of fuel, wear and tear and any parking charge, toll or congestion charge on a car journey.

Non-monetary costs refer to the time spent undertaking the journey. Time is converted to a money value using a value of time figure, which usually varies according to the traveller's income and the purpose of the trip.

The generalised cost is equivalent to the price of the good in supply and demand theory, and so demand for journeys can be related to the generalised cost of those journeys using the price elasticity of demand. Supply is equivalent to capacity (and, for roads, road quality) on the network.

Basic form

In a basic form, the generalised cost (g) is composed of the following:

Congestible networks

In a congestible system, every traveller imposes a small delay on every other traveller, increasing the journey time for all travellers. The generalised cost function can be expanded to reflect this congestion delay.

The additional term v(q,w) refers to the opportunity cost of the additional journey time a traveller experiences because of congestion. In transport economic models, the parameter q is the demand and w is a measure of capacity (which is relevant when considering possible capacity expansion).

For example, if the travel time on a particular stretch of road increases by 10 minutes for every 1000 vehicles per hour that use the road, if q were measured in thousands of vehicles per hour, we would consider the congestion function to be .

Weighting different types of time

It has been observed that travellers prefer time spent on some parts of their journey over time spent on others. A typical journey can be divided into four parts:

(All of these apply to public transport journeys; the wait for the vehicle does not generally apply to car or bicycle journeys, and for walk-only journeys, there is no division into parts.)

Typically, although travellers "dislike" all time spent travelling, they dislike walking and waiting parts of the journey more than in-vehicle journey time, and thus would be willing to pay more to avoid them. This results in a higher value of time for those parts of the journey than the main in-vehicle part of the journey. The function u(w) mentioned earlier can therefore be considered to consist of differing sets of valued time.

An alternative approach to applying different values of time to each part of the journey is to apply a weighting to time spent on each different part of the journey which quantifies the level of dislike a traveller has for time spent on that bit of the journey relative to time spent in-vehicle. For example, if a traveller considers 10 minutes' walk to be "as bad" as 12 minutes in a vehicle, then each minute of walking time is equivalent to 1.2 minutes of in-vehicle time. In this manner, all parts of the journey can be converted into their equivalent in-vehicle time.

Once the equivalent in-vehicle time for the whole journey is calculated, this can be converted to a monetary value as described earlier.

Generalised time

If the monetary cost of the journey (p) is considered to be irrelevant for the purposes of the exercise (for example, when comparing different journey options through a public transport network when fares are constant), there is no need to convert the generalised cost to a currency value - instead, it can be left in units of time, as long as all time is equivalent (for example, if all time is converted to in-vehicle time). These units of time may be referred to as generalised time.

Related Research Articles

<span class="mw-page-title-main">Transport economics</span> Branch of economics

Transport economics is a branch of economics founded in 1959 by American economist John R. Meyer that deals with the allocation of resources within the transport sector. It has strong links to civil engineering. Transport economics differs from some other branches of economics in that the assumption of a spaceless, instantaneous economy does not hold. People and goods flow over networks at certain speeds. Demands peak. Advance ticket purchase is often induced by lower fares. The networks themselves may or may not be competitive. A single trip may require the bundling of services provided by several firms, agencies and modes.

In computer science and optimization theory, the max-flow min-cut theorem states that in a flow network, the maximum amount of flow passing from the source to the sink is equal to the total weight of the edges in a minimum cut, i.e., the smallest total weight of the edges which if removed would disconnect the source from the sink.

<span class="mw-page-title-main">Road pricing</span> Revenue generation for road infrastructure

Road pricing are direct charges levied for the use of roads, including road tolls, distance or time-based fees, congestion charges and charges designed to discourage the use of certain classes of vehicle, fuel sources or more polluting vehicles. These charges may be used primarily for revenue generation, usually for road infrastructure financing, or as a transportation demand management tool to reduce peak hour travel and the associated traffic congestion or other social and environmental negative externalities associated with road travel such as air pollution, greenhouse gas emissions, visual intrusion, noise pollution and road traffic collisions.

<span class="mw-page-title-main">Traffic congestion</span> Transport condition characterized by slower speed and high density

Traffic congestion is a condition in transport that is characterized by slower speeds, longer trip times, and increased vehicular queueing. Traffic congestion on urban road networks has increased substantially since the 1950s. When traffic demand is great enough that the interaction between vehicles slows the speed of the traffic stream, this results in some congestion. While congestion is a possibility for any mode of transportation, this article will focus on automobile congestion on public roads.

Cost–benefit analysis (CBA), sometimes also called benefit–cost analysis, is a systematic approach to estimating the strengths and weaknesses of alternatives. It is used to determine options which provide the best approach to achieving benefits while preserving savings in, for example, transactions, activities, and functional business requirements. A CBA may be used to compare completed or potential courses of action, and to estimate or evaluate the value against the cost of a decision, project, or policy. It is commonly used to evaluate business or policy decisions, commercial transactions, and project investments. For example, the U.S. Securities and Exchange Commission must conduct cost-benefit analyses before instituting regulations or deregulations.

<span class="mw-page-title-main">Carpool</span> Sharing of car journeys so that more than one person travels in a car

Carpooling is the sharing of car journeys so that more than one person travels in a car, and prevents the need for others to have to drive to a location themselves.

<span class="mw-page-title-main">Induced demand</span> Phenomenon in which supply increases lead to a cycle of increased consumption

In economics, induced demand – related to latent demand and generated demand – is the phenomenon whereby an increase in supply results in a decline in price and an increase in consumption. In other words, as a good or service becomes more readily available and mass produced, its price goes down and consumers are more likely to buy it, meaning that demand subsequently increases. This is consistent with the economic theory of supply and demand.

<span class="mw-page-title-main">Isobaric process</span> Thermodynamic process in which pressure remains constant

In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: ΔP = 0. The heat transferred to the system does work, but also changes the internal energy (U) of the system. This article uses the physics sign convention for work, where positive work is work done by the system. Using this convention, by the first law of thermodynamics,

The Certificate of Entitlement (COE) is the quota licence for owning a vehicle in the city-state of Singapore. The licence is obtained from a successful winning bid in an open bid uniform price auction which grants the legal right of the holder to register, own and use a vehicle in Singapore for a period of 10 years. When demand is high, the cost of a COE can exceed the value of the car itself.

<span class="mw-page-title-main">Intermodal passenger transport</span> Places for travelers to transfer from one category of vehicle to another

Intermodal passenger transport, also called mixed-mode commuting, involves using two or more modes of transportation in a journey. Mixed-mode commuting is often used to combine the strengths of various transportation options. A major goal of modern intermodal passenger transport is to reduce dependence on the automobile as the major mode of ground transportation and increase use of public transport. To assist the traveller, various intermodal journey planners such as Rome2rio and Google Transit have been devised to help travellers plan and schedule their journey.

Monetization is, broadly speaking, the process of converting something into money. The term has a broad range of uses. In banking, the term refers to the process of converting or establishing something into legal tender. While it usually refers to the coining of currency or the printing of banknotes by central banks, it may also take the form of a promissory currency. The term "monetization" may also be used informally to refer to exchanging possessions for cash or cash equivalents, including selling a security interest, charging fees for something that used to be free, or attempting to make money on goods or services that were previously unprofitable or had been considered to have the potential to earn profits. And data monetization refers to a spectrum of ways information assets can be converted into economic value.

In mathematics and transportation engineering, traffic flow is the study of interactions between travellers and infrastructure, with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.

<span class="mw-page-title-main">Thermal efficiency</span> Performance measure of a device that uses thermal energy

In thermodynamics, the thermal efficiency is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc.

In transport economics, the value of time is the opportunity cost of the time that a traveler spends on their journey. In essence, this makes it the amount that a traveler would be willing to pay in order to save time, or the amount they would accept as compensation for lost time.

<span class="mw-page-title-main">Vehicle routing problem</span>

The vehicle routing problem (VRP) is a combinatorial optimization and integer programming problem which asks "What is the optimal set of routes for a fleet of vehicles to traverse in order to deliver to a given set of customers?" It generalises the travelling salesman problem (TSP). It first appeared in a paper by George Dantzig and John Ramser in 1959, in which the first algorithmic approach was written and was applied to petrol deliveries. Often, the context is that of delivering goods located at a central depot to customers who have placed orders for such goods. The objective of the VRP is to minimize the total route cost. In 1964, Clarke and Wright improved on Dantzig and Ramser's approach using an effective greedy algorithm called the savings algorithm.

In public transportation, schedule adherence or on-time performance refers to the level of success of the service remaining on the published schedule. On time performance, sometimes referred to as on time running, is normally expressed as a percentage, with a higher percentage meaning more vehicles are on time. The level of on time performance for many transport systems is a very important measure of the effectiveness of the system.

<span class="mw-page-title-main">London low emission zone</span> Traffic air pollution charge scheme

The London Low Emission Zone (LEZ) is a traffic pollution charge scheme with the aim of reducing the exhaust gas emissions of diesel-powered vehicles in London. The scheme applies London-wide to commercial vehicles, and should not be confused with the Ultra Low Emission Zone (ULEZ), introduced in April 2019, which applies to all vehicles in Central London. Vehicles that do not conform to various emission standards are charged; the others may enter the controlled zone free of charge. The low emission zone started operating on 4 February 2008 with phased introduction of an increasingly stricter regime until 3 January 2012. The scheme is administered by the Transport for London executive agency within the Greater London Authority.

Passengers per hour per direction (p/h/d), passengers per hour in peak direction (pphpd) or corridor capacity is a measure of the route capacity of a rapid transit or public transport system.

The Three-detector problem is a problem in traffic flow theory. Given is a homogeneous freeway and the vehicle counts at two detector stations. We seek the vehicle counts at some intermediate location. The method can be applied to incident detection and diagnosis by comparing the observed and predicted data, so a realistic solution to this problem is important. Newell G.F. proposed a simple method to solve this problem. In Newell's method, one gets the cumulative count curve (N-curve) of any intermediate location just by shifting the N-curves of the upstream and downstream detectors. Newell's method was developed before the variational theory of traffic flow was proposed to deal systematically with vehicle counts. This article shows how Newell's method fits in the context of variational theory.

<span class="mw-page-title-main">Radial route</span>

A radial route is a public transport route linking a central point in a city or town, usually in the central business district (CBD), with a suburb of that city or town. Such a route can be operated by various forms of public transport, including commuter rail, rapid transit, trams (streetcars), trolleybuses, or motor buses.

References

  1. Bruzelius, Nils A (1981). "Microeconomic theory and generalised cost". Transportation. 10 (3): 233–245. doi:10.1007/BF00148460. S2CID   153355844.
  2. Cesario, Frank J (1976). "Value of Time in Recreation Benefit Studies". Land Economics. 52 (1): 32–41. doi:10.2307/3144984. JSTOR   3144984.
  3. El-Geneidy, Ahmed; Levinson, David; Diab, Ehab; Boisjoly, Genevieve; Verbich, David; Loong, Charis (2016). "The cost of equity: Assessing transit accessibility and social disparity using total travel cost" (PDF). Transportation Research Part A: Policy and Practice . Elsevier. 91: 302–316. doi:10.1016/j.tra.2016.07.003.