Getter

Last updated
.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}
(center) A vacuum tube with a flashed getter coating on the inner surface of the top of the tube.
(left) The inside of a similar tube, showing the reservoir that holds the material that is evaporated to create the getter coating. During manufacture, after the tube is evacuated and sealed, an induction heater evaporates the material, which condenses on the glass. Getter diagram.png
  • (center) A vacuum tube with a flashed getter coating on the inner surface of the top of the tube.
  • (left) The inside of a similar tube, showing the reservoir that holds the material that is evaporated to create the getter coating. During manufacture, after the tube is evacuated and sealed, an induction heater evaporates the material, which condenses on the glass.

A getter is a deposit of reactive material that is placed inside a vacuum system to complete and maintain the vacuum. When gas molecules strike the getter material, they combine with it chemically or by absorption. Thus the getter removes small amounts of gas from the evacuated space. The getter is usually a coating applied to a surface within the evacuated chamber.

Contents

A vacuum is initially created by connecting a container to a vacuum pump. After achieving a sufficient vacuum, the container can be sealed, or the vacuum pump can be left running. Getters are especially important in sealed systems, such as vacuum tubes, including cathode ray tubes (CRTs), vacuum insulating glass (or vacuum glass) [1] and vacuum insulated panels, which must maintain a vacuum for a long time. This is because the inner surfaces of the container release absorbed gases for a long time after the vacuum is established. The getter continually removes residues of a reactive gas, such as oxygen, as long as it is desorbed from a surface, or continuously penetrating in the system (tiny leaks or diffusion through a permeable material). Even in systems which are continually evacuated by a vacuum pump, getters are also used to remove residual gas, often to achieve a higher vacuum than the pump could achieve alone. Although it is often present in minute amounts and has no moving parts, a getter behaves in itself as a vacuum pump. It is an ultimate chemical sink for reactive gases. [2] [3] [4] [5] [6]

Getters cannot react with inert gases, though some getters will adsorb them in a reversible way. Also, hydrogen is usually handled by adsorption rather than by reaction.

Types

To avoid being contaminated by the atmosphere, the getter must be introduced into the vacuum system in an inactive form during assembly, and activated after evacuation. This is usually done by heat. [7] Different types of getter use different ways of doing this:

Flashed getter
The getter material is held inactive in a reservoir during assembly and initial evacuation, and then heated and evaporated, usually by induction heating. The vaporized getter, usually a volatile metal, instantly reacts with any residual gas, and then condenses on the cool walls of the tube in a thin coating, the getter spot or getter mirror, which continues to absorb gas. This is the most common type, used in low-power vacuum tubes.
Non-evaporable getter (NEG) [8]
The getter remains in solid form.
Coating getter
A coating applied to metal parts of the vacuum system that will be heated during use. Usually a nonvolatile metal powder sintered in a porous coating to the surface of the electrodes of power vacuum tubes, maintained at temperatures of 200 to 1200 °C during operation.
Bulk getter
Sheets, strips, wires, or sintered pellets of gas absorbing metals which are heated, either by mounting them on hot components or by a separate heating element. These can often be renewed or replaced.
Getter pump or sorption pump
In laboratory vacuum systems, the bulk NEG getter is often held in a separate vessel with its own heater, attached to the vacuum system by a valve, so that it can be replaced or renewed when saturated. [8]
Ion getter pump
Uses a high voltage electrode to ionize the gas molecules and drive them into the getter surface. These can achieve very low pressures and are important in ultrahigh vacuum (UHV) systems. [8]

Flashed getters

Dead vacuum fluorescent display (air has leaked in and getter spot became white) Opachki dead vacuum luminescent display bednyaga da.JPG
Dead vacuum fluorescent display (air has leaked in and getter spot became white)

Flashed getters are prepared by arranging a reservoir of volatile and reactive material inside the vacuum system. After the system has been evacuated and sealed under rough vacuum, the material is heated (usually by radio frequency induction heating). After evaporating, it deposits as a coating on the interior surfaces of the system. Flashed getters (typically made with barium) are commonly used in vacuum tubes. Most getters can be seen as a silvery metallic spot on the inside of the tube's glass envelope. Large transmission tubes and specialty systems often use more exotic getters, including aluminium, magnesium, calcium, sodium, strontium, caesium, and phosphorus.

If the getter is exposed to atmospheric air (for example, if the tube breaks or develops a leak), it turns white and becomes useless. For this reason, flashed getters are only used in sealed systems. A functioning phosphorus getter looks very much like an oxidised metal getter, although it has an iridescent pink or orange appearance which oxidised metal getters lack. Phosphorus was frequently used before metallic getters were developed.

In systems which need to be opened to air for maintenance, a titanium sublimation pump provides similar functionality to flashed getters, but can be flashed repeatedly. Alternatively, nonevaporable getters may be used.

Those unfamiliar with sealed vacuum devices, such as vacuum tubes/thermionic valves, high-pressure sodium lamps or some types of metal-halide lamps, often notice the shiny flash getter deposit and mistakenly think it is a sign of failure or degradation of the device. Contemporary high-intensity discharge lamps tend to use non-evaporable getters rather than flash getters.

Those familiar with such devices can often make qualitative assessments as to the hardness or quality of the vacuum within by the appearance of the flash getter deposit, with a shiny deposit indicating a good vacuum. As the getter is used up, the deposit often becomes thin and translucent, particularly at the edges. It can take on a brownish-red semi-translucent appearance, which indicates poor seals or extensive use of the device at elevated temperatures. A white deposit, usually barium oxide, indicates total failure of the seal on the vacuum system, as shown in the fluorescent display module depicted above.

Activation

The typical flashed getter used in small vacuum tubes (seen in 12AX7 tube, top) consists of a ring-shaped structure made from a long strip of nickel, which is folded into a long, narrow trough, filled with a mixture of barium azide and powdered glass, and then folded into the closed ring shape. The getter is attached with its trough opening facing upward toward the glass, in the specific case depicted above.

During activation, while the bulb is still connected to the pump, an RF induction heating coil connected to a powerful RF oscillator operating in the 27 MHz or 40.68 MHz ISM band is positioned around the bulb in the plane of the ring. The coil acts as the primary of a transformer and the ring as a single shorted turn. Large RF currents flow in the ring, heating it. The coil is moved along the axis of the bulb so as not to overheat and melt the ring. As the ring is heated, the barium azide decomposes into barium vapor and nitrogen. The nitrogen is pumped out and the barium condenses on the bulb above the plane of the ring forming a mirror-like deposit with a large surface area. The powdered glass in the ring melts and entraps any particles which could otherwise escape loose inside the bulb causing later problems. The barium combines with any free gas when activated and continues to act after the bulb is sealed off from the pump. During use, the internal electrodes and other parts of the tube get hot. This can cause adsorbed gases to be released from metallic parts, such as anodes (plates), grids, or non-metallic porous parts, such as sintered ceramic parts. The gas is trapped on the large area of reactive barium on the bulb wall and removed from the tube.

Non-evaporable getters

Non-evaporable getters, which work at high temperature, generally consist of a film of a special alloy, often primarily zirconium; the requirement is that the alloy materials must form a passivation layer at room temperature which disappears when heated. Common alloys have names of the form St (Stabil) followed by a number:

In tubes used in electronics, the getter material coats plates within the tube which are heated in normal operation; when getters are used within more general vacuum systems, such as in semiconductor manufacturing, they are introduced as separate pieces of equipment in the vacuum chamber, and turned on when needed. Deposited and patterned getter material is being used in microelectronics packaging to provide an ultra-high vacuum in a sealed cavity. To enhance the getter pumping capacity, the activation temperature must be maximized, considering the process limitations. [10]

It is, of course, important not to heat the getter when the system is not already in a good vacuum.

See also

Related Research Articles

<span class="mw-page-title-main">Triode</span> Single-grid amplifying vacuum tube having three active electrodes

A triode is an electronic amplifying vacuum tube consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode, the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics.

<span class="mw-page-title-main">Vacuum tube</span> Device that controls current between electrodes

A vacuum tube, electron tube, valve, or tube, is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied.

<span class="mw-page-title-main">Vacuum pump</span> Equipment generating a relative vacuum

A vacuum pump is a type of pump device that draws gas particles from a sealed volume in order to leave behind a partial vacuum. The first vacuum pump was invented in 1650 by Otto von Guericke, and was preceded by the suction pump, which dates to antiquity.

<span class="mw-page-title-main">Incandescent light bulb</span> Electric light bulb with a resistively heated wire filament

An incandescent light bulb, incandescent lamp or incandescent light globe is an electric light with a wire filament that is heated until it glows. The filament is enclosed in a glass bulb that is either evacuated or filled with inert gas to protect the filament from oxidation. Current is supplied to the filament by terminals or wires embedded in the glass. A bulb socket provides mechanical support and electrical connections.

<span class="mw-page-title-main">Spark gap</span> Two conducting electrodes separated in order to allow an electric spark to pass between

A spark gap consists of an arrangement of two conducting electrodes separated by a gap usually filled with a gas such as air, designed to allow an electric spark to pass between the conductors. When the potential difference between the conductors exceeds the breakdown voltage of the gas within the gap, a spark forms, ionizing the gas and drastically reducing its electrical resistance. An electric current then flows until the path of ionized gas is broken or the current reduces below a minimum value called the "holding current". This usually happens when the voltage drops, but in some cases occurs when the heated gas rises, stretching out and then breaking the filament of ionized gas. Usually, the action of ionizing the gas is violent and disruptive, often leading to sound, light, and heat.

<span class="mw-page-title-main">Neon sign</span> Electrified, luminous tube lights

In the signage industry, neon signs are electric signs lighted by long luminous gas-discharge tubes that contain rarefied neon or other gases. They are the most common use for neon lighting, which was first demonstrated in a modern form in December 1910 by Georges Claude at the Paris Motor Show. While they are used worldwide, neon signs were popular in the United States from about the 1920s to 1950s. The installations in Times Square, many originally designed by Douglas Leigh, were famed, and there were nearly 2,000 small shops producing neon signs by 1940. In addition to signage, neon lighting is used frequently by artists and architects, and in plasma display panels and televisions. The signage industry has declined in the past several decades, and cities are now concerned with preserving and restoring their antique neon signs.

<span class="mw-page-title-main">Gas-filled tube</span> Assembly of electrodes at either end of an insulated tube filled with gas

A gas-filled tube, also commonly known as a discharge tube or formerly as a Plücker tube, is an arrangement of electrodes in a gas within an insulating, temperature-resistant envelope. Gas-filled tubes exploit phenomena related to electric discharge in gases, and operate by ionizing the gas with an applied voltage sufficient to cause electrical conduction by the underlying phenomena of the Townsend discharge. A gas-discharge lamp is an electric light using a gas-filled tube; these include fluorescent lamps, metal-halide lamps, sodium-vapor lamps, and neon lights. Specialized gas-filled tubes such as krytrons, thyratrons, and ignitrons are used as switching devices in electric devices.

<span class="mw-page-title-main">Solar thermal collector</span> Device that collects heat

A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and solar towers or non water heating devices such as solar cooker, solar air heaters.

Ultra-high vacuum is the vacuum regime characterised by pressures lower than about 1×10−6 pascals. UHV conditions are created by pumping the gas out of a UHV chamber. At these low pressures the mean free path of a gas molecule is greater than approximately 40 km, so the gas is in free molecular flow, and gas molecules will collide with the chamber walls many times before colliding with each other. Almost all molecular interactions therefore take place on various surfaces in the chamber.

<span class="mw-page-title-main">Hot cathode</span> Type of electrode

In vacuum tubes and gas-filled tubes, a hot cathode or thermionic cathode is a cathode electrode which is heated to make it emit electrons due to thermionic emission. This is in contrast to a cold cathode, which does not have a heating element. The heating element is usually an electrical filament heated by a separate electric current passing through it. Hot cathodes typically achieve much higher power density than cold cathodes, emitting significantly more electrons from the same surface area. Cold cathodes rely on field electron emission or secondary electron emission from positive ion bombardment, and do not require heating. There are two types of hot cathode. In a directly heated cathode, the filament is the cathode and emits the electrons. In an indirectly heated cathode, the filament or heater heats a separate metal cathode electrode which emits the electrons.

Vacuum engineering is the field of engineering that deals with the practical use of vacuum in industrial and scientific applications. Vacuum may improve the productivity and performance of processes otherwise carried out at normal air pressure, or may make possible processes that could not be done in the presence of air. Vacuum engineering techniques are widely applied in materials processing such as drying or filtering, chemical processing, application of metal coatings to objects, manufacture of electron devices and incandescent lamps, and in scientific research.

Electron-beam physical vapor deposition, or EBPVD, is a form of physical vapor deposition in which a target anode is bombarded with an electron beam given off by a charged tungsten filament under high vacuum. The electron beam causes atoms from the target to transform into the gaseous phase. These atoms then precipitate into solid form, coating everything in the vacuum chamber with a thin layer of the anode material.

<span class="mw-page-title-main">Thermal spraying</span> Coating process for applying heated materials to a surface

Thermal spraying techniques are coating processes in which melted materials are sprayed onto a surface. The "feedstock" is heated by electrical or chemical means.

<span class="mw-page-title-main">Evaporator</span> Machine transforming a liquid into a gas

An evaporator is a type of heat exchanger device that facilitates evaporation by utilizing conductive and convective heat transfer to provide the necessary thermal energy for phase transition from liquid to vapor. Within evaporators, a circulating liquid is exposed to an atmospheric or reduced pressure environment, causing it to boil at a lower temperature compared to normal atmospheric boiling.

<span class="mw-page-title-main">Evaporation (deposition)</span> Common method of thin-film deposition

Evaporation is a common method of thin-film deposition. The source material is evaporated in a vacuum. The vacuum allows vapor particles to travel directly to the target object (substrate), where they condense back to a solid state. Evaporation is used in microfabrication, and to make macro-scale products such as metallized plastic film.

<span class="mw-page-title-main">Sputter deposition</span> Method of thin film application

Sputter deposition is a physical vapor deposition (PVD) method of thin film deposition by the phenomenon of sputtering. This involves ejecting material from a "target" that is a source onto a "substrate" such as a silicon wafer. Resputtering is re-emission of the deposited material during the deposition process by ion or atom bombardment. Sputtered atoms ejected from the target have a wide energy distribution, typically up to tens of eV. The sputtered ions can ballistically fly from the target in straight lines and impact energetically on the substrates or vacuum chamber. Alternatively, at higher gas pressures, the ions collide with the gas atoms that act as a moderator and move diffusively, reaching the substrates or vacuum chamber wall and condensing after undergoing a random walk. The entire range from high-energy ballistic impact to low-energy thermalized motion is accessible by changing the background gas pressure. The sputtering gas is often an inert gas such as argon. For efficient momentum transfer, the atomic weight of the sputtering gas should be close to the atomic weight of the target, so for sputtering light elements neon is preferable, while for heavy elements krypton or xenon are used. Reactive gases can also be used to sputter compounds. The compound can be formed on the target surface, in-flight or on the substrate depending on the process parameters. The availability of many parameters that control sputter deposition make it a complex process, but also allow experts a large degree of control over the growth and microstructure of the film.

<span class="mw-page-title-main">Infrared heater</span> Device designed to create radiative heat

An infrared heater or heat lamp is a heating appliance containing a high-temperature emitter that transfers energy to a cooler object through electromagnetic radiation. Depending on the temperature of the emitter, the wavelength of the peak of the infrared radiation ranges from 750 nm to 1 mm. No contact or medium between the emitter and cool object is needed for the energy transfer. Infrared heaters can be operated in vacuum or atmosphere.

<span class="mw-page-title-main">Glass-to-metal seal</span> Airtight seal which joins glass and metal surfaces

Glass-to-metal seals are a type of mechanical seal which joins glass and metal surfaces. They are very important elements in the construction of vacuum tubes, electric discharge tubes, incandescent light bulbs, glass-encapsulated semiconductor diodes, reed switches, glass windows in metal cases, and metal or ceramic packages of electronic components.

<span class="mw-page-title-main">Materials for use in vacuum</span>

Materials for use in vacuum are materials that show very low rates of outgassing in vacuum and, where applicable, are tolerant to bake-out temperatures. The requirements grow increasingly stringent with the desired degree of vacuum to be achieved in the vacuum chamber. The materials can produce gas by several mechanisms. Molecules of gases and water can be adsorbed on the material surface. Materials may sublimate in vacuum. Or the gases can be released from porous materials or from cracks and crevices. Traces of lubricants, residues from machining, can be present on the surfaces. A specific risk is outgassing of solvents absorbed in plastics after cleaning.

SAES Getters S.p.A. is an Italian joint stock company, established in 1940. It is the parent company of the SAES industrial group, which focusses its business on the production of components and systems in advanced materials patented by the same company and used in various industrial and medical applications.

References

  1. IGMA (FGIA) TB-2600; Vacuum Insulating Glass
  2. O'Hanlon, John F. (2005). A User's Guide to Vacuum Technology (3 ed.). John Wiley and Sons. p. 247. ISBN   0471467154.
  3. Danielson, Phil (2004). "How To Use Getters and Getter Pumps" (PDF). A Journal of Practical and Useful Vacuum Technology. The Vacuum Lab website. Archived from the original (PDF) on 2005-02-09. Retrieved November 27, 2014.
  4. Mattox, Donald M. (2010). Handbook of Physical Vapor Deposition (PVD) Processing (2 ed.). William Andrew. p. 625. ISBN   978-0815520382.
  5. Welch, Kimo M. (2001). Capture Pumping Technology. Elsevier. p. 1. ISBN   0444508821.
  6. Bannwarth, Helmut (2006). Liquid Ring Vacuum Pumps, Compressors and Systems: Conventional and Hermetic Design. John Wiley & Sons. p. 120. ISBN   3527604723.
  7. Espe, Werner; Max Knoll; Marshall P. Wilder (October 1950). "Getter Materials for Electron Tubes" (PDF). Electronics. McGraw-Hill: 80–86. ISSN   0883-4989 . Retrieved 21 October 2013. on Pete Miller's Tubebooks website
  8. 1 2 3 Jousten, Karl (2008). Handbook of Vacuum Technology. John Wiley & Sons. pp. 463–474. ISBN   978-3-527-40723-1.
  9. "Nonevaporable getter alloys - US Patent 5961750". Archived from the original on 2012-09-11. Retrieved 2007-11-26.
  10. High-Q MEMS gyroscope