Ground level enhancement

Last updated

A Ground Level Enhancement or Ground Level Event (GLE), is a special subset of solar particle event where charged particles from the Sun have sufficient energy to generate effects which can be measured at the Earth's surface. These particles (mostly protons) are accelerated to high energies either within the solar atmosphere or in interplanetary space, with some debate as to the predominant acceleration method. [1] While solar particle events typically involve solar energetic particles at 10–100 MeV, GLEs involve particles with energies higher than about 400 MeV. [2]

Contents

Definition

The definition of a GLE is as follows: "A GLE event is registered when there are near-time coincident and statistically significant enhancements of the count rates of at least two differently located neutron monitors including at least one neutron monitor near sea level and a corresponding enhancement in the proton flux measured by a space-borne instrument(s)." [3]

There is a subclass of GLEs called sub-GLE: "A sub-GLE event is registered when there are near-time coincident and statistically significant enhancements of the count rates of at least two differently located high-elevation neutron monitors and a corresponding enhancement in the proton flux measured by a space-borne instrument(s), but no statistically significant enhancement in the count rates of neutron monitors near sea level." [3]

Description

Charged particles from the Sun generally do not possess the energy required to penetrate the Earth's magnetic field or Upper atmosphere. However, a small number of solar events produce charged particles which are able to penetrate these layers, causing an air shower. This particle shower reaches ground level, where effects are measured, leading to the name "Ground Level Enhancement". These effects are usually measured as elevated levels of neutrons and muons. [2] These events can increase the radiation dose of an individual at sea level or while in an aircraft, though not by enough to significantly increase an individual's lifetime risk of cancer. [4]

GLEs are distinct from individual cosmic rays because multiple charged particles enter the Earth's atmosphere simultaneously, leading to a synchronized event over a wide area. The term GLE refers to this wider event rather than an individual particle shower. A GLE is indicated by an increase in levels of neutrons and muons at one or more monitoring stations occurring over a period of 15 min or longer, followed by a longer decay to previous levels. [2]

GLEs are associated with intense solar flares; for example, the GLE which occurred on May 17, 2012, was associated with an M-Class flare which occurred 20 minutes prior. As GLE-causing particles have such high kinetic energies, they travel very quickly and can be used to predict the arrival of solar energetic particle (SEP) events (with lower-energy, slower particles). [2] The method by which solar flares and coronal mass ejections (CMEs) produce such high-energy particles is still uncertain, with some studies suggesting that they are produced mostly by a CME shock wave, by strong flare events or some combination, or related to the connection between the active solar region and the magnetic field of the Earth. [1]

Ground level enhancements are usually accompanied by a solar radiation storm. GLE occurrence rate was 29% for S2 or larger storms, 36% for S3 or larger, and 40% for S4 when correlated with the S-scale (related to the number of >10MeV protons measured at geosynchronous orbit). [2]

GLEs are uncommon. At present, 74 GLE events have been observed since the 1940s [5] . The most recent GLE #74 took place on 11th May 2024. GLEs are more frequent around solar maximum. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Radiation</span> Waves or particles moving through space

In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or a material medium. This includes:

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as carbon, nitrogen, oxygen, neon, magnesium, silicon, sulfur, and iron. There are also rarer traces of some other nuclei and isotopes such as phosphorus, titanium, chromium, and nickel's isotopes 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Cosmic ray</span> High-energy particle, mainly originating outside the Solar system

Cosmic rays or astroparticles are high-energy particles or clusters of particles that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own galaxy, and from distant galaxies. Upon impact with Earth's atmosphere, cosmic rays produce showers of secondary particles, some of which reach the surface, although the bulk are deflected off into space by the magnetosphere or the heliosphere.

<span class="mw-page-title-main">Solar flare</span> Eruption of electromagnetic radiation

A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.

<span class="mw-page-title-main">Van Allen radiation belt</span> Zone of energetic charged particles around the planet Earth

Van Allen radiation belt is a zone of energetic charged particles, most of which originate from the solar wind, that are captured by and held around a planet by that planet's magnetosphere. Earth has two such belts, and sometimes others may be temporarily created. The belts are named after James Van Allen, who is often credited with their discovery.

<span class="mw-page-title-main">Space weather</span> Branch of space physics and aeronomy

Space weather is a branch of space physics and aeronomy, or heliophysics, concerned with the varying conditions within the Solar System and its heliosphere. This includes the effects of the solar wind, especially on the Earth's magnetosphere, ionosphere, thermosphere, and exosphere. Though physically distinct, space weather is analogous to the terrestrial weather of Earth's atmosphere. The term "space weather" was first used in the 1950s and popularized in the 1990s. Later, it prompted research into "space climate", the large-scale and long-term patterns of space weather.

<span class="mw-page-title-main">Geomagnetic storm</span> Disturbance of the Earths magnetosphere

A geomagnetic storm, also known as a magnetic storm, is a temporary disturbance of the Earth's magnetosphere caused by a solar wind shock wave.

Ionizing radiation (US) (or ionising radiation [UK]), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel up to 99% of the speed of light, and the electromagnetic waves are on the high-energy portion of the electromagnetic spectrum.

<span class="mw-page-title-main">Advanced Composition Explorer</span> NASA satellite of the Explorer program

Advanced Composition Explorer is a NASA Explorer program satellite and space exploration mission to study matter comprising energetic particles from the solar wind, the interplanetary medium, and other sources.

Space environment is a branch of astronautics, aerospace engineering and space physics that seeks to understand and address conditions existing in space that affect the design and operation of spacecraft. A related subject, space weather, deals with dynamic processes in the solar-terrestrial system that can give rise to effects on spacecraft, but that can also affect the atmosphere, ionosphere and geomagnetic field, giving rise to several other kinds of effects on human technologies.

<span class="mw-page-title-main">Pierre Auger Observatory</span> International cosmic ray observatory in Argentina

The Pierre Auger Observatory is an international cosmic ray observatory in Argentina designed to detect ultra-high-energy cosmic rays: sub-atomic particles traveling nearly at the speed of light and each with energies beyond 1018 eV. In Earth's atmosphere such particles interact with air nuclei and produce various other particles. These effect particles (called an "air shower") can be detected and measured. But since these high energy particles have an estimated arrival rate of just 1 per km2 per century, the Auger Observatory has created a detection area of 3,000 km2 (1,200 sq mi)—the size of Rhode Island, or Luxembourg—in order to record a large number of these events. It is located in the western Mendoza Province, Argentina, near the Andes.

<span class="mw-page-title-main">ALICE experiment</span> Detector experiments at the Large Hadron Collider

ALICE is one of nine detector experiments at the Large Hadron Collider at CERN. The other eight are ATLAS, CMS, TOTEM, LHCb, LHCf, MoEDAL, FASER and SND@LHC.

<span class="mw-page-title-main">GRAPES-3</span>

The GRAPES-3 experiment located at Ooty in India started as a collaboration of the Indian Tata Institute of Fundamental Research and the Japanese Osaka City University, and now also includes the Japanese Nagoya Women's University.

<span class="mw-page-title-main">Solar energetic particles</span> High-energy particles from the Sun

Solar energetic particles (SEP), formerly known as solar cosmic rays, are high-energy, charged particles originating in the solar atmosphere and solar wind. They consist of protons, electrons and heavy ions with energies ranging from a few tens of keV to many GeV. The exact processes involved in transferring energy to SEPs is a subject of ongoing study.

Health threats from cosmic rays are the dangers posed by cosmic rays to astronauts on interplanetary missions or any missions that venture through the Van-Allen Belts or outside the Earth's magnetosphere. They are one of the greatest barriers standing in the way of plans for interplanetary travel by crewed spacecraft, but space radiation health risks also occur for missions in low Earth orbit such as the International Space Station (ISS).

A neutron monitor is a ground-based detector designed to measure the number of high-energy charged particles striking the Earth's atmosphere from outer space. For historical reasons the incoming particles are called "cosmic rays", but in fact they are particles, predominantly protons and Helium nuclei. Most of the time, a neutron monitor records galactic cosmic rays and their variation with the 11-year sunspot cycle and 22-year magnetic cycle. Occasionally the Sun emits cosmic rays of sufficient energy and intensity to raise radiation levels on Earth's surface to the degree that they are readily detected by neutron monitors. They are termed "ground level enhancements" (GLE).

<span class="mw-page-title-main">Bastille Day solar storm</span> Solar storm on 14-16 July 2000

The Bastille Day solar storm was a powerful solar storm on 14-16 July 2000 during the solar maximum of solar cycle 23. The storm began on the national day of France, Bastille Day. It involved a solar flare, a solar particle event, and a coronal mass ejection which caused a severe geomagnetic storm.

<span class="mw-page-title-main">Solar particle event</span> Solar phenomenon

In solar physics, a solar particle event (SPE), also known as a solar energetic particle event or solar radiation storm, is a solar phenomenon which occurs when particles emitted by the Sun, mostly protons, become accelerated either in the Sun's atmosphere during a solar flare or in interplanetary space by a coronal mass ejection shock. Other nuclei such as helium and HZE ions may also be accelerated during the event. These particles can penetrate the Earth's magnetic field and cause partial ionization of the ionosphere. Energetic protons are a significant radiation hazard to spacecraft and astronauts.

<span class="mw-page-title-main">Solar phenomena</span> Natural phenomena within the Suns atmosphere

Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. They take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots.

Cosmic ray astronomy is a branch of observational astronomy where scientists attempt to identify and study the potential sources of extremely high-energy charged particles called cosmic rays coming from outer space. These particles, which include protons, electrons, positrons and atomic nuclei, travel through space at nearly the speed of light and provide valuable insights into the most energetic processes in the universe. Unlike other branches of observational astronomy, it uniquely relies on charged particles as carriers of information.

References

  1. 1 2 Firoz, K.A.; Gan, W.Q.; Li, Y.P.; Rodríguez-Pacheco, J.; Kudela, K (20 February 2019). "On the Possible Mechanism of GLE Initiation". The Astrophysical Journal. 872 (178): 178. doi: 10.3847/1538-4357/ab0381 . S2CID   127145333.
  2. 1 2 3 4 5 Kuwabara, T.; Bieber, J. W.; Clem, J.; Evenson, P.; Pyle, R.; Munakata, K.; Yasue, S.; Kato, C.; Akahane, S.; Koyama, M.; Fujii, Z.; Duldig, M. L.; Humble, J. E.; Silva, M. R.; Trivedi, N. B.; Gonzalez, W. D.; Schuch, N. J. (15 August 2006). "Real-time cosmic ray monitoring system for space weather". Space Weather. 4 (8). AGU. doi: 10.1029/2005SW000204 . S2CID   14692869.
  3. 1 2 Poluianov, S.; Usoskin, I.; Mishev, A.; Shea, M.; Smart, D. (2017). "GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors". Solar Physics. 292: 176. arXiv: 1711.06161 . doi:10.1007/s11207-017-1202-4.
  4. 1 2 "British Government: Space Weather and radiation guidance, Public Health England" . Retrieved 19 November 2021.
  5. International GLE Database