HomeRF

Last updated
Home Radio Frequency Working Group
Formation1998 (1998)
Dissolved2003 (2003)
TypeIndustry consortium

HomeRF was a wireless networking specification for home devices. It was developed in 1998 by the Home Radio Frequency Working Group, a consortium of mobile wireless companies that included Proxim Wireless, Intel, Siemens AG, Motorola, Philips and more than 100 other companies. [1]

Contents

The group was disbanded in January 2003, after other wireless networks became accessible to home users and Microsoft began including support for them in its Windows operating systems. As a result, HomeRF fell into obsolescence.

Description

Initially called Shared Wireless Access Protocol (SWAP) and later just HomeRF, this open specification allowed PCs, peripherals, cordless phones and other consumer devices to share and communicate voice and data in and around the home without the complication and expense of running new wires. HomeRF combined several wireless technologies in the 2.4 GHz ISM band, including IEEE 802.11 FH (the frequency-hopping version of wireless data networking) and DECT (the most prevalent digital cordless telephony standard in the world) to meet the unique home networking requirements for security, quality of service (QoS) and interference immunity—issues that still plagued Wi-Fi (802.11b and g).[ citation needed ]

HomeRF used frequency hopping spread spectrum (FHSS) in the 2.4 GHz frequency band and in theory could achieve a maximum of 10 Mbit/s throughput; its nodes could travel within a 50-meter range of a wireless access point while remaining connected to the personal area network (PAN). Several standards and working groups focused on wireless networking technology in radio frequency (RF). Other standards include the popular IEEE 802.11 family, IEEE 802.16, and Bluetooth.

Proxim Wireless was the only supplier of HomeRF chipsets, and since Proxim also made end products, other manufacturers complained that they had to buy components from their competitor. The fact that our group didn't address that conflict led to the eventual downfall of HomeRF, which occurred during an economic recession when companies already struggled to justify duplicate engineering and marketing efforts - for HomeRF, 802.11 and Bluetooth. The fact that HomeRF was developed by a consortium and not an official standards body also put it at a disadvantage against Wi-Fi and its IEEE 802.11 standard.[ citation needed ]

AT&T joined the group because HomeRF was designed for high-speed broadband services and the need to support PCs, phones, stereos and televisions; but last-mile deployment occurred more slowly than expected and with slower speeds. So it was natural that the home networking market focused more on multi-PC households sharing Internet connections for email and browsing than on integrating phone and entertainment services into a broadband service bundle. As a result, the original promoter companies gradually started pulling out of the group rather than supporting multiple standards. They included IBM, Hewlett-Packard, Compaq, Microsoft, and lastly Intel. That left only companies like Motorola, National Semiconductor, Proxim, and Siemens. Even Proxim started pulling away when negative media surrounding HomeRF started affecting its core data networking business, and that left Siemens to do the work of integrating voice, data and video. Siemens was willing to do it alone with HomeRF technology but was concerned by growing uncertainties in the cordless phone market, including mobile phone as home phone, VoIP over Wi-Fi, and 5 GHz vs. 2.4 GHz. When Siemens eventually got out of the cordless phone market, it was the final nail in the HomeRF coffin.[ citation needed ]

HomeRF received some success because of its low cost and ease of installation. [2] By September 2000, some confusion came from the "home" in the name, leading some to associate HomeRF with home networks, using other technologies such as IEEE 802.11b for businesses. [3] A digital media receiver for audio was marketed under the name "Motorola SimpleFi" that used HomeRF. [4] [5] In March 2001, Intel announced they would not support further development of HomeRF technology for its Anypoint line. [6] The group promoting 802.11 technology, the Wireless Ethernet Compatibility Alliance (WECA) changed their name to the Wi-Fi Alliance in 2002, as the Wi-Fi brand became popular. [7]

The fact that WECA members lobbied the FCC for two years, which was effective in delaying the approval of wideband frequency-hopping, helped 802.11b catch up and gain an insurmountable lead in the market, which was then extended with 802.11g. The use of OFDM in 802.11a and .11g solved many of the RF interference problems of .11b. WPA and 802.11x also improved security over WEP encryption, which was especially important in the corporate world.[ citation needed ]

By January 2003 the Home Radio Frequency Working Group had disbanded. [8] Archives of the HomeRF Working Group are maintained by Palo Wireless and Wayne Caswell. [1] [9]

See also

Related Research Articles

<span class="mw-page-title-main">IEEE 802.11</span> Wireless network standard

IEEE 802.11 is part of the IEEE 802 set of local area network (LAN) technical standards, and specifies the set of medium access control (MAC) and physical layer (PHY) protocols for implementing wireless local area network (WLAN) computer communication. The standard and amendments provide the basis for wireless network products using the Wi-Fi brand and are the world's most widely used wireless computer networking standards. IEEE 802.11 is used in most home and office networks to allow laptops, printers, smartphones, and other devices to communicate with each other and access the Internet without connecting wires. IEEE 802.11 is also a basis for vehicle-based communication networks with IEEE 802.11p.

The ISM radio bands are portions of the radio spectrum reserved internationally for industrial, scientific, and medical (ISM) purposes, excluding applications in telecommunications. Examples of applications for the use of radio frequency (RF) energy in these bands include RF heating, microwave ovens, and medical diathermy machines. The powerful emissions of these devices can create electromagnetic interference and disrupt radio communication using the same frequency, so these devices are limited to certain bands of frequencies. In general, communications equipment operating in ISM bands must tolerate any interference generated by ISM applications, and users have no regulatory protection from ISM device operation in these bands.

<span class="mw-page-title-main">Wireless network</span> Computer network not fully connected by cables

A wireless network is a computer network that uses wireless data connections between network nodes. Wireless networking allows homes, telecommunications networks and business installations to avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Admin telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.

<span class="mw-page-title-main">Wi-Fi</span> Wireless local area network

Wi-Fi is a family of wireless network protocols based on the IEEE 802.11 family of standards, which are commonly used for local area networking of devices and Internet access, allowing nearby digital devices to exchange data by radio waves. These are the most widely used computer networks, used globally in home and small office networks to link devices and to provide Internet access with wireless routers and wireless access points in public places such as coffee shops, hotels, libraries, and airports to provide visitors.

Wireless local loop (WLL) is the use of a wireless communications link as the "last mile / first mile" connection for delivering plain old telephone service (POTS) or Internet access to telecommunications customers. Various types of WLL systems and technologies exist.

<span class="mw-page-title-main">MobileStar</span>

MobileStar Network was a wireless Internet service provider which first gained notability in deploying Wi-Fi Internet access points in Starbucks coffee shops, American Airlines Admiral Club locations across the United States and at Hilton Hotels. Founded by Mark Goode and Greg Jackson in 1998, MobileStar was the first wireless ISP to place a WiFi hotspot in an airport, a hotel, or a coffee shop. MobileStar's core value proposition was to provide wireless broadband connectivity for the business traveler in all the places s/he was likely to "sleep, eat, move, or meet." MobileStar's founder, Mark Goode, was the first to coin the now industry standard expression "hotspot," as a reference to a location equipped with an 802.11 wireless access point.

<span class="mw-page-title-main">WiMAX</span> Wireless broadband standard

Worldwide Interoperability for Microwave Access (WiMAX) is a family of wireless broadband communication standards based on the IEEE 802.16 set of standards, which provide physical layer (PHY) and media access control (MAC) options.

The S band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a part of the microwave band of the electromagnetic spectrum covering frequencies from 2 to 4 gigahertz (GHz). Thus it crosses the conventional boundary between the UHF and SHF bands at 3.0 GHz. The S band is used by airport surveillance radar for air traffic control, weather radar, surface ship radar, and some communications satellites, especially those satellites used by NASA to communicate with the Space Shuttle and the International Space Station. The 10 cm radar short-band ranges roughly from 1.55 to 5.2 GHz. The S band also contains the 2.4–2.483 GHz ISM band, widely used for low power unlicensed microwave devices such as cordless phones, wireless headphones (Bluetooth), wireless networking (WiFi), garage door openers, keyless vehicle locks, baby monitors as well as for medical diathermy machines and microwave ovens. India's regional satellite navigation network (IRNSS) broadcasts on 2.483778 to 2.500278 GHz.

<span class="mw-page-title-main">Wi-Fi Alliance</span> Non-profit organization that owns the Wi-Fi trademark

The Wi-Fi Alliance is a non-profit organization that owns the Wi-Fi trademark. Manufacturers may use the trademark to brand products certified for Wi-Fi interoperability. It is based in Austin, Texas.

802.11j-2004 or 802.11j is an amendment to the IEEE 802.11 standard designed specially for Japanese market. It allows wireless LAN operation in the 4.9–5.0 GHz band to conform to the Japanese rules for radio operation for indoor, outdoor and mobile applications. The amendment has been incorporated into the published IEEE 802.11-2007 standard.

IEEE 802.11n-2009, or 802.11n, is a wireless-networking standard that uses multiple antennas to increase data rates. The Wi-Fi Alliance has also retroactively labelled the technology for the standard as Wi-Fi 4. It standardized support for multiple-input multiple-output, frame aggregation, and security improvements, among other features, and can be used in the 2.4 GHz or 5 GHz frequency bands.

Cognio, Inc. was an American company that developed and marketed radio frequency (RF) spectrum analysis products that find and solve channel interference problems on wireless networks and in wireless applications. Cognio’s Spectrum Expert product was designed for common frequency bands such as RFID and Wi-Fi. It was sold primarily to network engineers responsible for security for wireless networks or applications that run on wireless networks. Cognio was acquired by Cisco Systems in 2007.

IEEE 802.11  – or more correctly IEEE 802.11-1997 or IEEE 802.11-1999 – refer to the original version of the IEEE 802.11 wireless networking standard released in 1997 and clarified in 1999. Most of the protocols described by this early version are rarely used today.

IEEE 802.11a-1999 or 802.11a was an amendment to the IEEE 802.11 wireless local network specifications that defined requirements for an orthogonal frequency-division multiplexing (OFDM) communication system. It was originally designed to support wireless communication in the unlicensed national information infrastructure (U-NII) bands as regulated in the United States by the Code of Federal Regulations, Title 47, Section 15.407.

IEEE 802.11b-1999 or 802.11b is an amendment to the IEEE 802.11 wireless networking specification that extends throughout up to 11 Mbit/s using the same 2.4 GHz band. A related amendment was incorporated into the IEEE 802.11-2007 standard.

IEEE 802.11g-2003 or 802.11g is an amendment to the IEEE 802.11 specification that operates in the 2.4 GHz microwave band. The standard has extended link rate to up to 54 Mbit/s using the same 20 MHz bandwidth as 802.11b uses to achieve 11 Mbit/s. This specification, under the marketing name of Wi‑Fi, has been implemented all over the world. The 802.11g protocol is now Clause 19 of the published IEEE 802.11-2007 standard, and Clause 19 of the published IEEE 802.11-2012 standard.

There are several uses of the 2.4 GHz ISM radio band. Interference may occur between devices operating at 2.4 GHz. This article details the different users of the 2.4 GHz band, how they cause interference to other users and how they are prone to interference from other users.

The Wireless LAN Interoperability Forum (WLIF) was a non-profit industry organization founded in 1996 to promote and certify wireless LAN products. It was active from about 1996 through 1998 and disbanded in 2001.

IEEE 802.11ac-2013 or 802.11ac is a wireless networking standard in the IEEE 802.11 set of protocols, providing high-throughput wireless local area networks (WLANs) on the 5 GHz band. The standard has been retroactively labelled as Wi-Fi 5 by Wi-Fi Alliance.

<span class="mw-page-title-main">IEEE 802.11be</span> Wireless networking standard in development

IEEE 802.11be, dubbed Extremely High Throughput (EHT), is the latest of the IEEE 802.11 standard, which is designated Wi-Fi 7. It has built upon 802.11ax, focusing on WLAN indoor and outdoor operation with stationary and pedestrian speeds in the 2.4, 5, and 6 GHz frequency bands.

References

  1. 1 2 Wayne Caswell (November 17, 2010). "HomeRF Archives" . Retrieved July 16, 2011.
  2. Ted Coombs; Roderico Deleon (July 24, 2002). Basic Home Networking. Cengage Learning. pp. 12–14. ISBN   978-0-7668-6180-0.
  3. Joanie Wexler (September 25, 2000). "HomeRF vs. 802.11b". Network World Wireless in the Enterprise Newsletter. Network World Fusion. Archived from the original on January 20, 2008. Retrieved September 14, 2013.
  4. "Motorola Simplefi review". CNet. August 16, 2002. Retrieved September 14, 2013.
  5. Bill Howard (March 13, 2002). "Simplefi Your Digital Music". PC Magazine. Retrieved September 14, 2013.
  6. "The Ripple Effect: How Intel's Choice to Support 802.11b is Affecting the Home Networking Market". Home Networks Newsletter. Vol. 3, no. 4. April 2001. pp. 9–10.
  7. Eric Griffith (July 17, 2002). "Wi-Fi5, We Hardly Knew Ye". 802.11 Planet. Archived from the original on December 7, 2002. Retrieved September 14, 2013.
  8. Clint Boulton (January 8, 2003). "HomeRF Working Group Calls it Quits". Internet News. Retrieved September 14, 2013.
  9. Eamon Myers. "HomeRF Resource Center Contents". Archived from the original on June 14, 2001. Retrieved September 14, 2013.

White Papers