Initial value formulation (general relativity)

Last updated

The initial value formulation of general relativity is a reformulation of Albert Einstein's theory of general relativity that describes a universe evolving over time.

Contents

Each solution of the Einstein field equations encompasses the whole history of a universe – it is not just some snapshot of how things are, but a whole spacetime: a statement encompassing the state of matter and geometry everywhere and at every moment in that particular universe. By this token, Einstein's theory appears to be different from most other physical theories, which specify evolution equations for physical systems; if the system is in a given state at some given moment, the laws of physics allow you to extrapolate its past or future. For Einstein's equations, there appear to be subtle differences compared with other fields: they are self-interacting (that is, non-linear even in the absence of other fields); they are diffeomorphism invariant, so to obtain a unique solution, a fixed background metric and gauge conditions need to be introduced; finally, the metric determines the spacetime structure, and thus the domain of dependence for any set of initial data, so the region on which a specific solution will be defined is not, a priori, defined. [1]

There is, however, a way to re-formulate Einstein's equations that overcomes these problems. First of all, there are ways of rewriting spacetime as the evolution of "space" in time; an earlier version of this is due to Paul Dirac, while a simpler way is known after its inventors Richard Arnowitt, Stanley Deser and Charles Misner as ADM formalism. In these formulations, also known as "3+1" approaches, spacetime is split into a three-dimensional hypersurface with interior metric and an embedding into spacetime with exterior curvature; these two quantities are the dynamical variables in a Hamiltonian formulation tracing the hypersurface's evolution over time. [2] With such a split, it is possible to state the initial value formulation of general relativity. It involves initial data which cannot be specified arbitrarily but needs to satisfy specific constraint equations, and which is defined on some suitably smooth three-manifold ; just as for other differential equations, it is then possible to prove existence and uniqueness theorems, namely that there exists a unique spacetime which is a solution of Einstein equations, which is globally hyperbolic, for which is a Cauchy surface (i.e. all past events influence what happens on , and all future events are influenced by what happens on it), and has the specified internal metric and extrinsic curvature; all spacetimes that satisfy these conditions are related by isometries. [3]

The initial value formulation with its 3+1 split is the basis of numerical relativity; attempts to simulate the evolution of relativistic spacetimes (notably merging black holes or gravitational collapse) using computers. [4] However, there are significant differences to the simulation of other physical evolution equations which make numerical relativity especially challenging, notably the fact that the dynamical objects that are evolving include space and time itself (so there is no fixed background against which to evaluate, for instance, perturbations representing gravitational waves) and the occurrence of singularities (which, when they are allowed to occur within the simulated portion of spacetime, lead to arbitrarily large numbers that would have to be represented in the computer model). [5]

See also

Notes

  1. Cf. Hawking & Ellis 1973 , sec. 7.1.
  2. Arnowitt, Deser & Misner 1962; for a pedagogical introduction, see Misner, Thorne & Wheeler 1973 , §21.4–§21.7.
  3. Fourès-Bruhat 1952 and Bruhat 1962; for a pedagogical introduction, see Wald 1984 , ch. 10; an online review can be found in Reula 1998.
  4. See Gourgoulhon 2007.
  5. For a review of the basics of numerical relativity, including the problems alluded to here and further difficulties, see Lehner 2001.

Related Research Articles

The weak and the strong cosmic censorship hypotheses are two mathematical conjectures about the structure of gravitational singularities arising in general relativity.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalises special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

In theoretical physics, geometrodynamics is an attempt to describe spacetime and associated phenomena completely in terms of geometry. Technically, its goal is to unify the fundamental forces and reformulate general relativity as a configuration space of three-metrics, modulo three-dimensional diffeomorphisms. The origin of this idea can be found in an English mathematician William Kingdon Clifford's works. This theory was enthusiastically promoted by John Wheeler in the 1960s, and work on it continues in the 21st century.

In general relativity, Regge calculus is a formalism for producing simplicial approximations of spacetimes that are solutions to the Einstein field equation. The calculus was introduced by the Italian theoretician Tullio Regge in 1961.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

Numerical relativity is one of the branches of general relativity that uses numerical methods and algorithms to solve and analyze problems. To this end, supercomputers are often employed to study black holes, gravitational waves, neutron stars and many other phenomena governed by Einstein's theory of general relativity. A currently active field of research in numerical relativity is the simulation of relativistic binaries and their associated gravitational waves.

Solutions of the Einstein field equations are metrics of spacetimes that result from solving the Einstein field equations (EFE) of general relativity. Solving the field equations gives a Lorentz manifold. Solutions are broadly classed as exact or non-exact.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres. There are several different types of coordinate chart which are adapted to this family of nested spheres; the best known is the Schwarzschild chart, but the isotropic chart is also often useful. The defining characteristic of an isotropic chart is that its radial coordinate is defined so that light cones appear round. This means that, the angular isotropic coordinates do not faithfully represent distances within the nested spheres, nor does the radial coordinate faithfully represent radial distances. On the other hand, angles in the constant time hyperslices are represented without distortion, hence the name of the chart.

Scalar theories of gravitation are field theories of gravitation in which the gravitational field is described using a scalar field, which is required to satisfy some field equation.

<span class="mw-page-title-main">ADM formalism</span>

The ADM formalism is a Hamiltonian formulation of general relativity that plays an important role in canonical quantum gravity and numerical relativity. It was first published in 1959.

<span class="mw-page-title-main">Canonical quantum gravity</span> A formulation of general relativity

In physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity. It is a Hamiltonian formulation of Einstein's general theory of relativity. The basic theory was outlined by Bryce DeWitt in a seminal 1967 paper, and based on earlier work by Peter G. Bergmann using the so-called canonical quantization techniques for constrained Hamiltonian systems invented by Paul Dirac. Dirac's approach allows the quantization of systems that include gauge symmetries using Hamiltonian techniques in a fixed gauge choice. Newer approaches based in part on the work of DeWitt and Dirac include the Hartle–Hawking state, Regge calculus, the Wheeler–DeWitt equation and loop quantum gravity.

<span class="mw-page-title-main">Charles W. Misner</span> American physicist (1932–2023)

Charles W. Misner was an American physicist and one of the authors of Gravitation. His specialties included general relativity and cosmology. His work has also provided early foundations for studies of quantum gravity and numerical relativity.

Newton–Cartan theory is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan and Kurt Friedrichs and later developed by Dautcourt, Dixon, Dombrowski and Horneffer, Ehlers, Havas, Künzle, Lottermoser, Trautman, and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.

<span class="mw-page-title-main">Yvonne Choquet-Bruhat</span> French mathematician and physicist

Yvonne Choquet-Bruhat is a French mathematician and physicist. She has made seminal contributions to the study of Einstein's general theory of relativity, by showing that the Einstein equations can be put into the form of an initial value problem which is well-posed. In 2015, her breakthrough paper was listed by the journal Classical and Quantum Gravity as one of thirteen 'milestone' results in the study of general relativity, across the hundred years in which it had been studied.

In general relativity, the Hamilton–Jacobi–Einstein equation (HJEE) or Einstein–Hamilton–Jacobi equation (EHJE) is an equation in the Hamiltonian formulation of geometrodynamics in superspace, cast in the "geometrodynamics era" around the 1960s, by Asher Peres in 1962 and others. It is an attempt to reformulate general relativity in such a way that it resembles quantum theory within a semiclassical approximation, much like the correspondence between quantum mechanics and classical mechanics.

References