Jet blast deflector

Last updated
A typical blast fence at an airport Blast fence FAA.jpg
A typical blast fence at an airport
An airman services a jet blast deflector (JBD) before flight operations aboard an aircraft carrier US Navy 031026-N-4768W-908 Airman Bryan Simmins, from Lemoore, Calif., greases the joints of a jet blast deflector (JBD) before flight operations on the flight deck of USS John C. Stennis (CVN 74).jpg
An airman services a jet blast deflector (JBD) before flight operations aboard an aircraft carrier

A jet blast deflector (JBD) or blast fence is a safety device that redirects the high energy exhaust from a jet engine to prevent damage and injury. The structure must be strong enough to withstand heat and high speed air streams as well as dust and debris carried by the turbulent air. [1] Without a deflector, jet blast can be dangerous to people, equipment, vehicles and other aircraft. [2]

Contents

Jet blast deflectors range in complexity from stationary concrete, metal or fiberglass fences to heavy panels that are raised and lowered by hydraulic arms and actively cooled. Blast deflectors can be used as protection from helicopter and fixed-wing aircraft propwash. At airports and jet engine service centers, jet blast deflectors can be combined with sound-deadening walls to form a ground run-up enclosure within which a jet aircraft engine can safely and more quietly be tested at full thrust.

Purpose

High energy jet engine exhaust can cause injury and damage. Jet blast has been known to uproot trees, shatter windows, overturn automobiles and trucks, flatten poorly made structures and injure people. [2] Other aircraft in the jet blast, especially lightweight ones, have been blown around and damaged by jet exhaust. [2] Hurricane-force air streams moving at speeds up to 100 knots (190 km/h; 120 mph) have been measured behind the largest jet-powered aircraft at distances of over 200 feet (60 m). [2] A Boeing 777's two General Electric GE90 engines combine to create a thrust of approximately 200,000 pounds-force (900,000 N), [1] a level of force which is high enough to kill people. [2] To prevent these problems, jet blast deflectors redirect the air stream in a non-dangerous direction, frequently upward.

Airports

An illustration of a Christmas tree at Glasgow Air Force Base, showing the positioning of the jet blast deflectors GAFB Christmas Tree Alert Apron.png
An illustration of a Christmas tree at Glasgow Air Force Base, showing the positioning of the jet blast deflectors

Jet blast deflectors began to appear at airports in the 1950s. [3] [4] Airports in the 1960s used jet blast deflectors with a height of 6 to 8 feet (1.8 to 2.4 m), but airports in the 1990s needed deflectors that were twice as high, [5] and even up to 35 feet (11 m) high for jet airliners such as the McDonnell Douglas DC-10 and MD-11, which have engines mounted in the tail above the fuselage. [1] Airports often place their deflectors at the beginnings of runways, especially when roadways or structures are adjacent. Airports that are in dense urban areas often have deflectors between taxiways and airport borders. Jet blast deflectors usually direct exhaust gases upward. [6] However, a low-pressure zone can form behind the blast fence, causing ambient air and debris to be drawn upward with the jet exhaust, and hot, toxic gases to circulate behind the blast fence. [7] Jet blast deflectors have been designed to counteract this problem by using multiple panels and various angles, and by using slotted panel surfaces. [7]

Ground run-up enclosure

After a jet engine has been overhauled or has undergone the replacement of parts, it is normal to run the engine up to full thrust to test it. [7] Rural airports rarely provide more than a distant portion of the airfield within which to test engines at full thrust, but urban airports surrounded by residential areas often specify that engine tests be conducted within a ground run-up enclosure ("hush house"), so that the engine noise can be reduced for residents.

Aircraft carriers

A Sukhoi Su-33 preparing for take-off on the Russian aircraft carrier Admiral Kuznetsov, with the jet blast deflector deployed Sukhoi Su-33 on Admiral Kuznetsov-2.jpg
A Sukhoi Su-33 preparing for take-off on the Russian aircraft carrier Admiral Kuznetsov, with the jet blast deflector deployed
In 2003 aboard the USS Abraham Lincoln (CVN-72), a jet blast deflector is raised hydraulically to protect an F/A-18 Hornet from the exhaust of another US Navy 030405-N-9951B-021 Two F-A-18 Hornets prepare to launch.jpg
In 2003 aboard the USS Abraham Lincoln (CVN-72), a jet blast deflector is raised hydraulically to protect an F/A-18 Hornet from the exhaust of another

Aircraft carriers use jet blast deflectors at the rear of aircraft catapults, positioned to protect other aircraft from exhaust blast damage. Jet blast deflectors are made of heavy duty material that is raised and lowered by hydraulic cylinders or linear actuators. The jet blast deflector lies flush with and serves as a portion of the flight deck until the aircraft to be launched rolls over it on the way to the catapult. When the aircraft is clear of the deflector, the heavy panel is raised into position to redirect the hot jet blast. [7] As soon as the deflector is raised, another aircraft can be brought into position behind it, and flight deck personnel can perform final readiness duties without the danger of hot, violent exhaust gases. Such systems were installed on aircraft carriers in the late 1940s and early 1950s, as jet-powered aircraft began to appear in navies. [8]

Jet blast deflectors aboard aircraft carriers are placed in very close proximity to the 2,300 °F (1,300 °C) [9] temperatures of modern jet fighter exhaust. [6] The non-skid decking surface of the deflector suffers heat damage and requires frequent maintenance or replacement. Additionally, the hot deflector surface cannot be used as normal decking until it has cooled enough to allow aircraft tires to roll over it. [6] To mitigate the heat problem, active cooling systems were installed in the 1970s, tapping the fire mains (fire suppression water systems) to use seawater circulating through water lines within the deflector panel. [9] However, the water cooling system adds more complexity and failure points, and requires additional maintenance. The most recent method tried by the United States Navy for solving the heat problem was introduced in 2008 with USS George H.W. Bush which uses heavy-duty metal panels covered in heat-dissipating ceramic tiles similar to those used on the Space Shuttle. [10] The tiled panels can be changed quickly and easily—the ship carries a large replacement supply. [10] Without active water lines, the passively-tiled deflector is expected to require much less maintenance. [10]

Blast deflector

A jet blast deflector is often called simply a "blast deflector", however, this term has other uses. In gunnery, the term "blast deflector" refers to a device which protects the gun crew from the muzzle blast of a gun. In small arms, a "blast deflector" is another name for a muzzle brake which directs muzzle blast to the sides and upward to prevent the muzzle from climbing during automatic fire. [11]

See also

Related Research Articles

<span class="mw-page-title-main">Jet engine</span> Aircraft engine that produces thrust by emitting a jet of gas

A jet engine is a type of reaction engine, discharging a fast-moving jet of heated gas that generates thrust by jet propulsion. While this broad definition may include rocket, water jet, and hybrid propulsion, the term jet engine typically refers to an internal combustion air-breathing jet engine such as a turbojet, turbofan, ramjet, or pulse jet. In general, jet engines are internal combustion engines.

<span class="mw-page-title-main">Ramjet</span> Atmospheric jet engine designed to operate at supersonic speeds

A ramjet, or athodyd, is a form of airbreathing jet engine that uses the forward motion of the engine to take in air for combustion that produces jet thrust. Since it produces no thrust when stationary ramjet-powered vehicles require an assisted take-off like a rocket assist to accelerate it to a speed where it begins to produce thrust. Ramjets work most efficiently at supersonic speeds around Mach 3 and can operate up to speeds of Mach 6.

A vertical take-off and landing (VTOL) aircraft is one that can take off and land vertically without relying on a runway. This classification can include a variety of types of aircraft including helicopters as well as thrust-vectoring fixed-wing aircraft and other hybrid aircraft with powered rotors such as cyclogyros/cyclocopters and gyrodynes.

<span class="mw-page-title-main">Muzzle brake</span> Anti-recoil gunbarrel attachment

A muzzle brake or recoil compensator is a device connected to, or a feature integral to the construction of, the muzzle or barrel of a firearm or cannon that is intended to redirect a portion of propellant gases to counter recoil and unwanted muzzle rise. Barrels with an integral muzzle brake are often said to be ported.

<span class="mw-page-title-main">Turbojet</span> Airbreathing jet engine which is typically used in aircraft

The turbojet is an airbreathing jet engine which is typically used in aircraft. It consists of a gas turbine with a propelling nozzle. The gas turbine has an air inlet which includes inlet guide vanes, a compressor, a combustion chamber, and a turbine. The compressed air from the compressor is heated by burning fuel in the combustion chamber and then allowed to expand through the turbine. The turbine exhaust is then expanded in the propelling nozzle where it is accelerated to high speed to provide thrust. Two engineers, Frank Whittle in the United Kingdom and Hans von Ohain in Germany, developed the concept independently into practical engines during the late 1930s.

<span class="mw-page-title-main">Coandă-1910</span> Aircraft

The Coandă-1910, designed by Romanian inventor Henri Coandă, was an unconventional sesquiplane aircraft powered by a ducted fan. Called the "turbo-propulseur" by Coandă, its experimental engine consisted of a conventional piston engine driving a multi-bladed centrifugal blower which exhausted into a duct. The unusual aircraft attracted attention at the Second International Aeronautical Exhibition in Paris in October 1910, being the only exhibit without a propeller, but the aircraft was not displayed afterwards, and it fell from public awareness. Coandă used a similar turbo-propulseur to drive a snow sledge, but he did not develop it further for aircraft.

<span class="mw-page-title-main">Rocket engine</span> Non-air breathing jet engine used to propel a missile or vehicle

A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance with Newton's third law. Most rocket engines use the combustion of reactive chemicals to supply the necessary energy, but non-combusting forms such as cold gas thrusters and nuclear thermal rockets also exist. Vehicles propelled by rocket engines are commonly called rockets. Rocket vehicles carry their own oxidiser, unlike most combustion engines, so rocket engines can be used in a vacuum to propel spacecraft and ballistic missiles.

<span class="mw-page-title-main">Thrust vectoring</span> Facet of ballistics and aeronautics


Thrust vectoring, also known as thrust vector control (TVC), is the ability of an aircraft, rocket, or other vehicle to manipulate the direction of the thrust from its engine(s) or motor(s) to control the attitude or angular velocity of the vehicle.

<span class="mw-page-title-main">Thrust reversal</span> Temporary diversion of an aircraft engines thrust

Thrust reversal, also called reverse thrust, is the temporary diversion of an aircraft engine's thrust for it to act against the forward travel of the aircraft, providing deceleration. Thrust reverser systems are featured on many jet aircraft to help slow down just after touch-down, reducing wear on the brakes and enabling shorter landing distances. Such devices affect the aircraft significantly and are considered important for safe operations by airlines. There have been accidents involving thrust reversal systems, including fatal ones.

<span class="mw-page-title-main">Spoiler (aeronautics)</span> Device for reducing lift and increasing drag on aircraft wings

In aeronautics, a spoiler is a device which intentionally reduces the lift component of an airfoil in a controlled way. Most often, spoilers are plates on the top surface of a wing that can be extended upward into the airflow to spoil the streamline flow. By so doing, the spoiler creates a controlled stall over the portion of the wing behind it, greatly reducing the lift of that wing section. Spoilers differ from airbrakes in that airbrakes are designed to increase drag without disrupting the lift distribution across the wing span, while spoilers disrupt the lift distribution as well as increasing drag.

<span class="mw-page-title-main">Pratt & Whitney J58</span> High-speed jet engine by Pratt & Whitney

The Pratt & Whitney J58 is an American jet engine that powered the Lockheed A-12, and subsequently the YF-12 and the SR-71 aircraft. It was an afterburning turbojet engine with a unique compressor bleed to the afterburner that gave increased thrust at high speeds. Because of the wide speed range of the aircraft, the engine needed two modes of operation to take it from stationary on the ground to 2,000 mph (3,200 km/h) at altitude. It was a conventional afterburning turbojet for take-off and acceleration to Mach 2 and then used permanent compressor bleed to the afterburner above Mach 2. The way the engine worked at cruise led it to be described as "acting like a turboramjet". It has also been described as a turboramjet based on incorrect statements describing the turbomachinery as being completely bypassed.

A propelling nozzle is a nozzle that converts the internal energy of a working gas into propulsive force; it is the nozzle, which forms a jet, that separates a gas turbine, or gas generator, from a jet engine.

A combustor is a component or area of a gas turbine, ramjet, or scramjet engine where combustion takes place. It is also known as a burner, burner can, combustion chamber or flame holder. In a gas turbine engine, the combustor or combustion chamber is fed high-pressure air by the compression system. The combustor then heats this air at constant pressure as the fuel/air mix burns. As it burns the fuel/air mix heats and rapidly expands. The burned mix is exhausted from the combustor through the nozzle guide vanes to the turbine. In the case of a ramjet or scramjet engines, the exhaust is directly fed out through the nozzle.

<span class="mw-page-title-main">Hush house</span> Facility for testing aircraft systems

A hush house is an enclosed, noise-suppressed facility used for testing aircraft systems, including propulsion, mechanics, electronics, pneumatics, and others. Installed or uninstalled jet engines can be run under actual load conditions.

<span class="mw-page-title-main">Reaction Engines LAPCAT A2</span> Hypersonic jetliner concept

The Reaction Engines Limited LAPCAT Configuration A2 is a design study for a hypersonic speed jet airliner intended to provide long range, high capacity commercial transportation.

<span class="mw-page-title-main">Components of jet engines</span> Brief description of components needed for jet engines

This article briefly describes the components and systems found in jet engines.

An airbreathing jet engine is a jet engine in which the exhaust gas which supplies jet propulsion is atmospheric air, which is taken in, compressed, heated, and expanded back to atmospheric pressure through a propelling nozzle. Compression may be provided by a gas turbine, as in the original turbojet and newer turbofan, or arise solely from the ram pressure of the vehicle's velocity, as with the ramjet and pulsejet.

A Pulse Ejector Thrust Augmentor or PETA is a proprietary pulse jet engine developed by Boeing. The Boeing PETA design embeds the pulse jet inside a thrust augmenting duct which entrains surrounding air into the exhaust stream. This entrained air improves thrust and cools the pulse jet. Boeing may use the PETA in its Light Aerial Multi-purpose Vehicle (LAMV) Future Combat System.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

<span class="mw-page-title-main">Ski-jump (aviation)</span> Take-off ramp for aircraft

In aviation, a ski-jump is an upward-curved ramp that allows aircraft to take off from a runway that is shorter than the aircraft's required takeoff roll. By forcing the aircraft upwards, lift-off can be achieved at a lower airspeed than that required for sustained flight, while allowing the aircraft to accelerate to such speed in the air rather than on the runway. Ski-jumps are commonly used to launch airplanes from aircraft carriers that lack catapults.

References

  1. 1 2 3 Stanley, Lynn B. Split exhaust jet blast deflector fence. U.S. Patent 5,429,324 , issued July 4, 1995.
  2. 1 2 3 4 5 Morrison, Rowena. ASRS Directline, Issue Number 6, August 1993. "Ground Jet Blast Hazard." Retrieved on November 13, 2009.
  3. Brown, Edward L. Blast fence for jet engines. U.S. Patent 2,726,830 , issued December 13, 1955.
  4. Hayden, Harold J. Jet engine exhaust deflector. U.S. Patent 2,826,382 , issued March 11, 1958.
  5. Stanley, Lynn B. Jet blast deflector fence. U.S. Patent 5,127,609 , issued July 7, 1992.
  6. 1 2 3 Campion, Gordon Pearson. Blast deflector. U.S. Patent 6,802,477 issued October 12, 2004.
  7. 1 2 3 4 Stanley, Lynn B. Blast deflecting fence. U.S. Patent 4,471,924 , issued September 18, 1984.
  8. Federation of American Scientists. "CV-9 Essex Class: Overview." Archived 2011-03-10 at the Wayback Machine USS Oriskany (CV-34) began a major refit in October 1947 and was returned to service in August 1951 with a number of modernizations including jet blast deflectors.
  9. 1 2 Fischer, Eugene C. and Dale A. Sowell, John Wehrle, Peter O. Cervenka. Cooled jet blast deflectors for aircraft carrier flight decks. U.S. Patent 6,575,113 , issued June 10, 2003.
  10. 1 2 3 GlobalSecurity.org. "CVN-77 - George H.W. Bush." July 10, 2006. Retrieved on November 14, 2009.
  11. Carlucci, Donald E. and Sidney S. Jacobson. Ballistics: Theory and Design of Guns and Ammunition, pp. 158–159. CRC Press, 2007. ISBN   1-4200-6618-8