Mixer-settler

Last updated

Mixer-settler scheme Mixer-settler schema.jpg
Mixer-settler scheme

Mixer settlers are a class of mineral process equipment used in the solvent extraction process. A mixer settler consists of a first stage that mixes the phases together followed by a quiescent settling stage that allows the phases to separate by gravity.

Contents

Mixer

A mixing chamber where a mechanical agitator brings in intimate contact the feed solution and the solvent to carry out the transfer of solute(s). The mechanical agitator is equipped with a motor which drives a mixing and pumping turbine. This turbine draws the two phases from the settlers of the adjacent stages, mixes them, and transfers this emulsion to the associated settler. The mixer may consists of one or multiple stages of mixing tanks. Common laboratory mixers consist of a single mixing stage, whereas industrial scale copper mixers may consist of up to three mixer stages where each stage performs a combined pumping and mixing action. Use of multiple stages allows a longer reaction time and also minimizes the short circuiting of unreacted material through the mixers. [1]

Settler

A settling chamber where the two phases separate by static decantation. Coalescence plates facilitate the separation of the emulsion into two phases (heavy and light). The two phases then pass to continuous stages by overflowing the light phase and heavy phase weirs. The height of the heavy phase weir can be adjusted in order to position the heavy/light interphase in the settling chamber based on the density of each one of the phases. The settler is a calm pool downstream of the mixer where the liquids are allowed to separate by gravity. The liquids are then removed separately from the end of the mixer.

Use

4 stage battery of mixer-settlers for counter-current extraction Mixer-settler-schema.jpg
4 stage battery of mixer-settlers for counter-current extraction

Industrial mixer settlers are commonly used in the copper, nickel, uranium, lanthanide, and cobalt hydrometallurgy industries, when solvent extraction processes are applied. They are also used in the Nuclear reprocessing field to separate and purify primarily Uranium and Plutonium, removing the fission product impurities.

In the multiple countercurrent process, multiple mixer settlers are installed with mixing and settling chambers located at alternating ends for each stage (since the outlet of the settling sections feed the inlets of the adjacent stage's mixing sections). Mixer-settlers are used when a process requires longer residence times and when the solutions are easily separated by gravity. They require a large facility footprint, but do not require much headspace, and need limited remote maintenance capability for occasional replacement of mixing motors. (Colven, 1956; Davidson, 1957) [2]

The equipment units can be arrayed as:

Copper Example

In the case of oxide copper ore, a heap leaching pad will dissolve a dilute copper sulfate solution in a weak sulfuric acid solution. This pregnant leach solution (PLS) is pumped to an extraction mixer settler where it is mixed with the organic phase (a kerosene hosted extractant). The copper transfers to the organic phase, and the aqueous phase (now called raffinate) is pumped back to the heap to recover more copper.

In a high-chloride environment typical of Chilean copper mines, a wash stage will rinse any residual pregnant solution entrained in the organic with clean water.

The copper is then stripped from organic phase in the strip stage into a strong sulfuric acid solution suitable for electrowinning. This strong acid solution is called barren electrolyte when it enters the cell, and strong electrolyte when it is copper bearing after reacting in the cell.

See also

Related Research Articles

<span class="mw-page-title-main">Solution (chemistry)</span> Homogeneous mixture of a solute and a solvent

In chemistry, a solution is a special type of homogeneous mixture composed of two or more substances. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent. If the attractive forces between the solvent and solute particles are greater than the attractive forces holding the solute particles together, the solvent particles pull the solute particles apart and surround them. These surrounded solute particles then move away from the solid solute and out into the solution. The mixing process of a solution happens at a scale where the effects of chemical polarity are involved, resulting in interactions that are specific to solvation. The solution usually has the state of the solvent when the solvent is the larger fraction of the mixture, as is commonly the case. One important parameter of a solution is the concentration, which is a measure of the amount of solute in a given amount of solution or solvent. The term "aqueous solution" is used when one of the solvents is water.

<span class="mw-page-title-main">Aqueous solution</span> Solution in which the solvent is water

An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be represented as Na+(aq) + Cl(aq). The word aqueous means pertaining to, related to, similar to, or dissolved in, water. As water is an excellent solvent and is also naturally abundant, it is a ubiquitous solvent in chemistry. Since water is frequently used as the solvent in experiments, the word solution refers to an aqueous solution, unless the solvent is specified.

Extractive metallurgy is a branch of metallurgical engineering wherein process and methods of extraction of metals from their natural mineral deposits are studied. The field is a materials science, covering all aspects of the types of ore, washing, concentration, separation, chemical processes and extraction of pure metal and their alloying to suit various applications, sometimes for direct use as a finished product, but more often in a form that requires further working to achieve the given properties to suit the applications.

<span class="mw-page-title-main">High-performance liquid chromatography</span> Technique used to separate components of a liquid mixture

High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify each component in a mixture. It relies on pumps to pass a pressurized liquid solvent containing the sample mixture through a column filled with a solid adsorbent material. Each component in the sample interacts slightly differently with the adsorbent material, causing different flow rates for the different components and leading to the separation of the components as they flow out of the column.

<span class="mw-page-title-main">Precipitation (chemistry)</span> Chemical process leading to the settling of an insoluble solid from a solution

In an aqueous solution, precipitation is the process of transforming a dissolved substance into an insoluble solid from a supersaturated solution. The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemical reagent causing the solid to form is called the precipitant.

<span class="mw-page-title-main">Copper extraction</span> Process of extracting copper from the ground

Copper extraction refers to the methods used to obtain copper from its ores. The conversion of copper ores consists of a series of physical, chemical and electrochemical processes. Methods have evolved and vary with country depending on the ore source, local environmental regulations, and other factors.

<span class="mw-page-title-main">Ion exchange</span> Exchange of ions between an electrolyte solution and a solid

Ion exchange is a reversible interchange of one kind of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid with the reaction being used especially for softening or making water demineralised, the purification of chemicals and separation of substances.

Hydrometallurgy is a technique within the field of extractive metallurgy, the obtaining of metals from their ores. Hydrometallurgy involve the use of aqueous solutions for the recovery of metals from ores, concentrates, and recycled or residual materials. Processing techniques that complement hydrometallurgy are pyrometallurgy, vapour metallurgy, and molten salt electrometallurgy. Hydrometallurgy is typically divided into three general areas:

Solvent extraction and electrowinning (SX/EW) is a two-stage hydrometallurgical process that first extracts and upgrades copper ions from low-grade leach solutions into a solvent containing a chemical that selectively reacts with and binds the copper in the solvent. The copper is extracted from the solvent with strong aqueous acid which then deposits pure copper onto cathodes using an electrolytic procedure (electrowinning).

<span class="mw-page-title-main">Separatory funnel</span> Laboratory glassware

A separatory funnel, also known as a separation funnel, separating funnel, or colloquially sep funnel, is a piece of laboratory glassware used in liquid-liquid extractions to separate (partition) the components of a mixture into two immiscible solvent phases of different densities. Typically, one of the phases will be aqueous, and the other a lipophilic organic solvent such as ether, MTBE, dichloromethane, chloroform, or ethyl acetate. All of these solvents form a clear delineation between the two liquids. The more dense liquid, typically the aqueous phase unless the organic phase is halogenated, sinks to the bottom of the funnel and can be drained out through a valve away from the less dense liquid, which remains in the separatory funnel.

<span class="mw-page-title-main">PUREX</span> Spent fuel reprocessing process for plutonium and uranium recovery

PUREX is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. PUREX is the de facto standard aqueous nuclear reprocessing method for the recovery of uranium and plutonium from used nuclear fuel. It is based on liquid–liquid extraction ion-exchange.

Liquid–liquid extraction (LLE), also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar). There is a net transfer of one or more species from one liquid into another liquid phase, generally from aqueous to organic. The transfer is driven by chemical potential, i.e. once the transfer is complete, the overall system of chemical components that make up the solutes and the solvents are in a more stable configuration. The solvent that is enriched in solute(s) is called extract. The feed solution that is depleted in solute(s) is called the raffinate. LLE is a basic technique in chemical laboratories, where it is performed using a variety of apparatus, from separatory funnels to countercurrent distribution equipment called as mixer settlers. This type of process is commonly performed after a chemical reaction as part of the work-up, often including an acidic work-up.

<span class="mw-page-title-main">Solid-phase extraction</span> Process to separate compounds by properties

Solid-phase extraction (SPE) is a solid-liquid extractive technique by which compounds that are dissolved or suspended in a liquid mixture are separated from other compounds in the mixture according to their physical and chemical properties. Analytical laboratories use solid phase extraction to concentrate and purify samples for analysis. Solid phase extraction can be used to isolate analytes of interest from a wide variety of matrices, including urine, blood, water, beverages, soil, and animal tissue.

Aqueous biphasic systems (ABS) or aqueous two-phase systems (ATPS) are clean alternatives for traditional organic-water solvent extraction systems.

<span class="mw-page-title-main">Magnox Reprocessing Plant</span> Nuclear reprocessing plant at Sellafield

The Magnox Reprocessing Plant is a former nuclear reprocessing facility at Sellafield in northern England, which operated from 1964 to 2022. The plant used PUREX chemistry to extract plutonium and uranium from used nuclear fuel originating primarily from Magnox reactors. The plant was originally constructed and operated by the United Kingdom Atomic Energy Authority (UKAEA), but in 1971 control was transferred to British Nuclear Fuels Limited (BNFL). Since 2005 the plant has been operated by Sellafield Ltd.

Acid–base extraction is a subclass of liquid–liquid extractions and involves the separation of chemical species from other acidic or basic compounds. It is typically performed during the work-up step following a chemical synthesis to purify crude compounds and results in the product being largely free of acidic or basic impurities. A separatory funnel is commonly used to perform an acid-base extraction.

<span class="mw-page-title-main">Miscibility</span> Ability of two substances to form a homogeneous solution when mixed regardless of concentration

Miscibility is the property of two substances to mix in all proportions, forming a homogeneous mixture. The term is most often applied to liquids but also applies to solids and gases. An example in liquids is the miscibility of water and ethanol as they mix in all proportions.

<span class="mw-page-title-main">Centrifugal extractor</span>

A centrifugal extractor—also known as a centrifugal contactor or annular centrifugal contactor—uses the rotation of the rotor inside a centrifuge to mix two immiscible liquids outside the rotor and to separate the liquids in the field of gravity inside the rotor. This way, a centrifugal extractor generates a continuous extraction from one liquid phase into another liquid phase.

Solvent impregnated resins (SIRs) are commercially available (macro)porous resins impregnated with a solvent/an extractant. In this approach, a liquid extractant is contained within the pores of (adsorption) particles. Usually, the extractant is an organic liquid. Its purpose is to extract one or more dissolved components from a surrounding aqueous environment. The basic principle combines adsorption, chromatography and liquid-liquid extraction.

<span class="mw-page-title-main">Actinide chemistry</span> Branch of nuclear chemistry

Actinide chemistry is one of the main branches of nuclear chemistry that investigates the processes and molecular systems of the actinides. The actinides derive their name from the group 3 element actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide. All but one of the actinides are f-block elements, corresponding to the filling of the 5f electron shell; lawrencium, a d-block element, is also generally considered an actinide. In comparison with the lanthanides, also mostly f-block elements, the actinides show much more variable valence. The actinide series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium.

References

  1. "Technical paper on design of industrial mixers". Archived from the original on 14 July 2006. Retrieved 29 July 2006.
  2. Liquid-Liquid Extraction Equipment, Jack D. Law and Terry A. Todd, Idaho National Laboratory.