Nuclear magnetic moment

Last updated

The nuclear magnetic moment is the magnetic moment of an atomic nucleus and arises from the spin of the protons and neutrons. It is mainly a magnetic dipole moment; the quadrupole moment does cause some small shifts in the hyperfine structure as well. All nuclei that have nonzero spin also possess a nonzero magnetic moment and vice versa, although the connection between the two quantities is not straightforward or easy to calculate.

Contents

The nuclear magnetic moment varies from isotope to isotope of an element. For a nucleus of which the numbers of protons and of neutrons are both even in its ground state (i.e. lowest energy state), the nuclear spin and magnetic moment are both always zero. In cases with odd numbers of either or both protons and neutrons, the nucleus often has nonzero spin and magnetic moment. The nuclear magnetic moment is not sum of nucleon magnetic moments, this property being assigned to the tensorial character of the nuclear force, such as in the case of the most simple nucleus where both proton and neutron appear, namely deuterium nucleus, deuteron.

Measurement methods

The methods for measuring nuclear magnetic moments can be divided into two broad groups in regard to the interaction with internal or external applied fields. [1] Generally the methods based on external fields are more accurate.

Different experimental techniques are designed in order to measure nuclear magnetic moments of a specific nuclear state. For instance, the following techniques are aimed to measure magnetic moments of an associated nuclear state in a range of life-times τ:

Techniques as Transient Field have allowed measuring the g-factor in nuclear states with life-times of few picoseconds or less. [2]

Shell model

According to the shell model, protons or neutrons tend to form pairs of opposite total angular momentum. Therefore, the magnetic moment of a nucleus with even numbers of each protons and neutrons is zero, while that of a nucleus with an odd number of protons and even number of neutrons (or vice versa) will have to be that of the remaining unpaired nucleon. For a nucleus with odd numbers of each protons and neutrons, the total magnetic moment will be some combination of the magnetic moments of both of the "last", unpaired proton and neutron.

The magnetic moment is calculated through j, l and s of the unpaired nucleon, but nuclei are not in states of well defined l and s. Furthermore, for odd–odd nuclei, there are two unpaired nucleons to be considered, as in deuterium. There is consequently a value for the nuclear magnetic moment associated with each possible l and s state combination, and the actual state of the nucleus is a superposition of these. Thus the real (measured) nuclear magnetic moment is between the values associated with the "pure" states, though it may be close to one or the other (as in deuterium).

g-factors

The g-factor is a dimensionless factor associated to the nuclear magnetic moment. This parameter contains the sign of the nuclear magnetic moment, which is very important in nuclear structure since it provides information about which type of nucleon (proton or neutron) is dominating over the nuclear wave function. The positive sign is associated to the proton domination and the negative sign with the neutron domination.

The values of g(l) and g(s) are known as the g-factors of the nucleons. [3]

The measured values of g(l) for the neutron and the proton are according to their electric charge. Thus, in units of nuclear magneton, g(l) = 0 for the neutron and g(l) = 1 for the proton.

The measured values of g(s) for the neutron and the proton are twice their magnetic moment (either the neutron or proton magnetic moment). In nuclear magneton units, g(s) = −3.8263 for the neutron and g(s) = 5.5858 for the proton.

Gyromagnetic ratio

The gyromagnetic ratio, expressed in Larmor precession frequency , is of great relevance to nuclear magnetic resonance analysis. Some isotopes in the human body have unpaired protons or neutrons (or both, as the magnetic moments of a proton and neutron do not cancel perfectly) [4] [5] [6] Note that in the table below, the measured magnetic dipole moments, expressed in a ratio to the nuclear magneton, may be divided by the half-integral nuclear spin to calculate dimensionless g-factors. These g-factors may be multiplied by 7.622593285(47)  MHz/T , [7] which is the nuclear magneton divided by the Planck constant, to yield Larmor frequencies (in MHz/T). If divided instead by the reduced Planck constant, which is 2π less, a gyromagnetic ratio expressed in radians is obtained, which is greater by a factor of 2π.

The quantized difference between energy levels corresponding to different orientations of the nuclear spin . The ratio of nuclei in the lower energy state, with spin aligned to the external magnetic field, is determined by the Boltzmann distribution. [8] Thus, multiplying the dimensionless g-factor by the nuclear magneton and the applied magnetic field, and dividing by the product of the Boltzmann constant and the temperature.

IsotopeMagnetic dipole
moment [9] [10]
[μN]
Nuclear
spin [9]
[ħ]
g-factor [11] Larmor
frequency
[MHz/T]
Gyromagnetic ratio,
free atom [12]
[rad/s·μT]
Isotopic
abundance
NMR sensitivity,
relative to 1H [4]
Formulaμ (measured) [11] Ig = μ/I [10] ν/B = N/hω/B = γ = N/ħ
1H 2.79284734(3)1/25.5856946842.6267.52220899.98%1
2H 0.857438228(9)10.8574382286.541.06629190.02%
3H 2.9789624656(59)1/25.957924931(12)
7Li 3.256427(2)3/22.170975016.5103.9770492.6%
13C 0.7024118(14)1/21.40482410.767.282861.11%0.016
14N 0.40376100(6)10.403761003.119.33779899.63%0.001
19F 2.626868(8)1/25.25373640.4251.6233100.00%0.83
23Na 2.217522(2)3/21.478437111.370.808516100.00%0.093
31P 1.13160(3)1/217.2108.394100.00%0.066
39K 0.39147(3)3/20.26100492.012.50061293.1%

Calculating the magnetic moment

In the shell model, the magnetic moment of a nucleon of total angular momentum j, orbital angular momentum l and spin s, is given by

Projecting with the total angular momentum j gives

has contributions both from the orbital angular momentum and the spin, with different coefficients g(l) and g(s):

by substituting this back to the formula above and rewriting

For a single nucleon . For we get

and for

See also

Related Research Articles

<span class="mw-page-title-main">Deuterium</span> Isotope of hydrogen with one neutron

Deuterium (hydrogen-2, symbol 2H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other is protium, or hydrogen-1). The deuterium nucleus, called a deuteron, contains one proton and one neutron, whereas the far more common protium has no neutrons in the nucleus. Deuterium has a natural abundance in Earth's oceans of about one atom of deuterium among every 6,420 atoms of hydrogen (see heavy water). Thus deuterium accounts for about 0.0156% by number (0.0312% by mass) of all hydrogen in the oceans: 4.85×1013 tonnes of deuterium – mainly in form of HOD (or 1HO2H or 1H2HO) and only rarely in form of D2O (or 2H2O) – in 1.4×1018 tonnes of water. The abundance of deuterium changes slightly from one kind of natural water to another (see Vienna Standard Mean Ocean Water).

<span class="mw-page-title-main">Paramagnetism</span> Weak, attractive magnetism possessed by most elements and some compounds

Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, diamagnetic materials are repelled by magnetic fields and form induced magnetic fields in the direction opposite to that of the applied magnetic field. Paramagnetic materials include most chemical elements and some compounds; they have a relative magnetic permeability slightly greater than 1 and hence are attracted to magnetic fields. The magnetic moment induced by the applied field is linear in the field strength and rather weak. It typically requires a sensitive analytical balance to detect the effect and modern measurements on paramagnetic materials are often conducted with a SQUID magnetometer.

<span class="mw-page-title-main">Nuclear shell model</span> Model of the atomic nucleus

In nuclear physics, atomic physics, and nuclear chemistry, the nuclear shell model utilizes the Pauli exclusion principle to model the structure of atomic nuclei in terms of energy levels. The first shell model was proposed by Dmitri Ivanenko in 1932. The model was developed in 1949 following independent work by several physicists, most notably Maria Goeppert Mayer and J. Hans D. Jensen, who received the 1963 Nobel Prize in Physics for their contributions to this model, and Eugene Wigner, who received the Nobel Prize alongside them for his earlier groundlaying work on the atomic nuclei.

The nuclear magneton is a physical constant of magnetic moment, defined in SI units by:

<span class="mw-page-title-main">Zeeman effect</span> Spectral line splitting in magnetic field

The Zeeman effect is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel prize for this discovery. It is analogous to the Stark effect, the splitting of a spectral line into several components in the presence of an electric field. Also similar to the Stark effect, transitions between different components have, in general, different intensities, with some being entirely forbidden, as governed by the selection rules.

In particle, atomic and condensed matter physics, a Yukawa potential is a potential named after the Japanese physicist Hideki Yukawa. The potential is of the form:

<span class="mw-page-title-main">Hyperfine structure</span> Small shifts and splittings in the energy levels of atoms, molecules and ions

In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.

<span class="mw-page-title-main">Magnetic moment</span> Magnetic strength and orientation of an object that produces a magnetic field

In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.

In physics, the gyromagnetic ratio of a particle or system is the ratio of its magnetic moment to its angular momentum, and it is often denoted by the symbol γ, gamma. Its SI unit is the radian per second per tesla (rad⋅s−1⋅T−1) or, equivalently, the coulomb per kilogram (C⋅kg−1).

In particle theory, the skyrmion is a topologically stable field configuration of a certain class of non-linear sigma models. It was originally proposed as a model of the nucleon by Tony Skyrme in 1961. As a topological soliton in the pion field, it has the remarkable property of being able to model, with reasonable accuracy, multiple low-energy properties of the nucleon, simply by fixing the nucleon radius. It has since found application in solid-state physics, as well as having ties to certain areas of string theory.

In physics, the Landé g-factor is a particular example of a g-factor, namely for an electron with both spin and orbital angular momenta. It is named after Alfred Landé, who first described it in 1921.

In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847646917(29)×10−24 J⋅T−1. In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB, a value that was measured with a relative accuracy of 1.3×10−13.

<span class="mw-page-title-main">Orbital motion (quantum)</span> Quantum mechanical property

Quantum orbital motion involves the quantum mechanical motion of rigid particles about some other mass, or about themselves. In classical mechanics, an object's orbital motion is characterized by its orbital angular momentum and spin angular momentum, which is the object's angular momentum about its own center of mass. In quantum mechanics there are analogous orbital and spin angular momenta which describe the orbital motion of a particle, represented as quantum mechanical operators instead of vectors.

In quantum physics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two relativistic effects: the apparent magnetic field seen from the electron perspective and the magnetic moment of the electron associated with its intrinsic spin. A similar effect, due to the relationship between angular momentum and the strong nuclear force, occurs for protons and neutrons moving inside the nucleus, leading to a shift in their energy levels in the nucleus shell model. In the field of spintronics, spin–orbit effects for electrons in semiconductors and other materials are explored for technological applications. The spin–orbit interaction is at the origin of magnetocrystalline anisotropy and the spin Hall effect.

<span class="mw-page-title-main">Nuclear force</span> Force that acts between the protons and neutrons of atoms

The nuclear force is a force that acts between hadrons, most commonly observed between protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nuclear force almost identically. Since protons have charge +1 e, they experience an electric force that tends to push them apart, but at short range the attractive nuclear force is strong enough to overcome the electrostatic force. The nuclear force binds nucleons into atomic nuclei.

The Breit equation, or Dirac–Coulomb–Breit equation, is a relativistic wave equation derived by Gregory Breit in 1929 based on the Dirac equation, which formally describes two or more massive spin-1/2 particles interacting electromagnetically to the first order in perturbation theory. It accounts for magnetic interactions and retardation effects to the order of 1/c2. When other quantum electrodynamic effects are negligible, this equation has been shown to give results in good agreement with experiment. It was originally derived from the Darwin Lagrangian but later vindicated by the Wheeler–Feynman absorber theory and eventually quantum electrodynamics.

In physics, Larmor precession is the precession of the magnetic moment of an object about an external magnetic field. The phenomenon is conceptually similar to the precession of a tilted classical gyroscope in an external torque-exerting gravitational field. Objects with a magnetic moment also have angular momentum and effective internal electric current proportional to their angular momentum; these include electrons, protons, other fermions, many atomic and nuclear systems, as well as classical macroscopic systems. The external magnetic field exerts a torque on the magnetic moment,

A g-factor is a dimensionless quantity that characterizes the magnetic moment and angular momentum of an atom, a particle or the nucleus. It is the ratio of the magnetic moment of a particle to that expected of a classical particle of the same charge and angular momentum. In nuclear physics, the nuclear magneton replaces the classically expected magnetic moment in the definition. The two definitions coincide for the proton.

<span class="mw-page-title-main">Fermi contact interaction</span> Magnetic interaction between an electron and a nucleus

The Fermi contact interaction is the magnetic interaction between an electron and an atomic nucleus. Its major manifestation is in electron paramagnetic resonance and nuclear magnetic resonance spectroscopies, where it is responsible for the appearance of isotropic hyperfine coupling.

The nucleon magnetic moments are the intrinsic magnetic dipole moments of the proton and neutron, symbols μp and μn. The nucleus of an atom comprises protons and neutrons, both nucleons that behave as small magnets. Their magnetic strengths are measured by their magnetic moments. The nucleons interact with normal matter through either the nuclear force or their magnetic moments, with the charged proton also interacting by the Coulomb force.

References

  1. Blyn Stoyle, Magnetic moments, p. 6
  2. Benczer-Koller, N; Hass, M; Sak, J (December 1980). "Transient Magnetic Fields at Swift Ions Traversing Ferromagnetic Media and Application to Measurements of Nuclear Moments". Annual Review of Nuclear and Particle Science . 30 (1): 53–84. Bibcode:1980ARNPS..30...53B. doi: 10.1146/annurev.ns.30.120180.000413 . ISSN   0163-8998.
  3. Torres Galindo, Diego A; Ramirez, Fitzgerald (2014-10-06). "Nuclear structure aspects via g-factor measurements: pushing the frontiers". Proceedings of 10th Latin American Symposium on Nuclear Physics and Applications – PoS(X LASNPA). 194. Montevideo, Uruguay: Sissa Medialab: 021. doi: 10.22323/1.194.0021 .
  4. 1 2 R. Edward Hendrick (2007-12-14). Fundamentals of Magnetic Resonance Imaging. Springer. p. 10. ISBN   9780387735078.
  5. K. Kirk Shung; Michael Smith; Benjamin M.W. Tsui (2012-12-02). Principles of Medical Imaging. Academic Press. p. 216. ISBN   9780323139939.
  6. Manorama Berry; et al., eds. (2006). Diagnostic Radiology : Neuroradiology : Head and Neck Imaging. Jaypee Brothers. ISBN   9788180616365.
  7. "nuclear magneton in MHz/T: ". NIST (citing CODATA recommended values). 2014.
  8. "Nuclear magnetic resonance spectroscopy". Sheffield Hallam University.
  9. 1 2 Gladys H. Fuller (1975). "Nuclear spins and moments" (PDF). J Phys Chem Ref Data. 5 (4). Magnetic dipole moments are given with a diamagnetic correction applied; the correction values are detailed in this source.
  10. 1 2 NJ Stone (February 2014). "Table of nuclear magnetic dipole and electric quadrupole moments" (PDF). IAEA. For some nuclei multiple magnetic dipole values were given based on different methods and publications. For brevity only the first of each in the table is shown here.
  11. 1 2 "Almanac 2011" (PDF). Bruker. 2011.
  12. From Bruker's Almanac, PDF page 118 (numbers here have been multiplied by 10 to account for different units)

Bibliography