Optical rotatory dispersion

Last updated

Optical rotatory dispersion is the variation of the specific rotation of a medium with respect to the wavelength of light. Usually described Drude's empirical relation,

Contents

,

where is the specific rotation at temperature and wavelength , and and are constants that depend on the properties of the medium [1] .

Optical rotatory dispersion has applications in organic chemistry regarding determining the structure of organic compounds [2] .

Principles of operation

When white light passes through a polarizer, the extent of rotation of light depends on its wavelength. Short wavelengths are rotated more than longer wavelengths, per unit of distance. Because the wavelength of light determines its color, the variation of color with distance through the tube is observed.[ citation needed ] This dependence of specific rotation on wavelength is called optical rotatory dispersion. In all materials the rotation varies with wavelength. The variation is caused by two quite different phenomena. The first accounts in most cases for the majority of the variation in rotation and should not strictly be termed rotatory dispersion. It depends on the fact that optical activity is actually circular birefringence. In other words, a substance which is optically active transmits right circularly polarized light with a different velocity from left circularly polarized light.

In addition to this pseudodispersion which depends on the material thickness, there is a true rotatory dispersion which depends on the variation with wavelength of the indices of refraction for right and left circularly polarized light.

For wavelengths that are absorbed by the optically active sample, the two circularly polarized components will be absorbed to differing extents. This unequal absorption is known as circular dichroism. Circular dichroism causes incident linearly polarized light to become elliptically polarized. The two phenomena are closely related, just as are ordinary absorption and dispersion. If the entire optical rotatory dispersion spectrum is known, the circular dichroism spectrum can be calculated, and vice versa.

Chirality

In order for a molecule (or crystal) to exhibit circular birefringence and circular dichroism, it must be distinguishable from its mirror image. An object that cannot be superimposed on its mirror image is said to be chiral, and optical rotatory dispersion and circular dichroism are known as chiroptical properties.

Most biological molecules have one or more chiral centers and undergo enzyme-catalyzed transformations that either maintain or invert the chirality at one or more of these centers. Still other enzymes produce new chiral centers, always with a high specificity. These properties account for the fact that optical rotatory dispersion and circular dichroism are widely used in organic and inorganic chemistry and in biochemistry.

In the absence of magnetic fields, only chiral substances exhibit optical rotatory dispersion and circular dichroism. In a magnetic field, even substances that lack chirality rotate the plane of polarized light, as shown by Michael Faraday. Magnetic optical rotation is known as the Faraday effect, and its wavelength dependence is known as magnetic optical rotatory dispersion. In regions of absorption, magnetic circular dichroism is observable.

See also

Related Research Articles

<span class="mw-page-title-main">Refractive index</span> Ratio of the speed of light in vacuum to that in the medium

In optics, the refractive index of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.

<span class="mw-page-title-main">Optical rotation</span> Rotation of the plane of linearly polarized light as it travels through a chiral material

Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity. Optical activity occurs only in chiral materials, those lacking microscopic mirror symmetry. Unlike other sources of birefringence which alter a beam's state of polarization, optical activity can be observed in fluids. This can include gases or solutions of chiral molecules such as sugars, molecules with helical secondary structure such as some proteins, and also chiral liquid crystals. It can also be observed in chiral solids such as certain crystals with a rotation between adjacent crystal planes or metamaterials.

<span class="mw-page-title-main">Polarization (waves)</span> Property of waves that can oscillate with more than one orientation

Polarization is a property of transverse waves which specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the wave. A simple example of a polarized transverse wave is vibrations traveling along a taut string (see image); for example, in a musical instrument like a guitar string. Depending on how the string is plucked, the vibrations can be in a vertical direction, horizontal direction, or at any angle perpendicular to the string. In contrast, in longitudinal waves, such as sound waves in a liquid or gas, the displacement of the particles in the oscillation is always in the direction of propagation, so these waves do not exhibit polarization. Transverse waves that exhibit polarization include electromagnetic waves such as light and radio waves, gravitational waves, and transverse sound waves in solids.

<span class="mw-page-title-main">Dichroism</span> Phenomenon where the material is splitting two or more beams of different colours

In optics, a dichroic material is either one which causes visible light to be split up into distinct beams of different wavelengths (colours), or one in which light rays having different polarizations are absorbed by different amounts.

Circular dichroism (CD) is dichroism involving circularly polarized light, i.e., the differential absorption of left- and right-handed light. Left-hand circular (LHC) and right-hand circular (RHC) polarized light represent two possible spin angular momentum states for a photon, and so circular dichroism is also referred to as dichroism for spin angular momentum. This phenomenon was discovered by Jean-Baptiste Biot, Augustin Fresnel, and Aimé Cotton in the first half of the 19th century. Circular dichroism and circular birefringence are manifestations of optical activity. It is exhibited in the absorption bands of optically active chiral molecules. CD spectroscopy has a wide range of applications in many different fields. Most notably, UV CD is used to investigate the secondary structure of proteins. UV/Vis CD is used to investigate charge-transfer transitions. Near-infrared CD is used to investigate geometric and electronic structure by probing metal d→d transitions. Vibrational circular dichroism, which uses light from the infrared energy region, is used for structural studies of small organic molecules, and most recently proteins and DNA.

<span class="mw-page-title-main">Magnetic circular dichroism</span>

Magnetic circular dichroism (MCD) is the differential absorption of left and right circularly polarized light, induced in a sample by a strong magnetic field oriented parallel to the direction of light propagation. MCD measurements can detect transitions which are too weak to be seen in conventional optical absorption spectra, and it can be used to distinguish between overlapping transitions. Paramagnetic systems are common analytes, as their near-degenerate magnetic sublevels provide strong MCD intensity that varies with both field strength and sample temperature. The MCD signal also provides insight into the symmetry of the electronic levels of the studied systems, such as metal ion sites.

The Faraday effect or Faraday rotation, sometimes referred to as the magneto-optic Faraday effect (MOFE), is a physical magneto-optical phenomenon. The Faraday effect causes a polarization rotation which is proportional to the projection of the magnetic field along the direction of the light propagation. Formally, it is a special case of gyroelectromagnetism obtained when the dielectric permittivity tensor is diagonal. This effect occurs in most optically transparent dielectric materials under the influence of magnetic fields.

<span class="mw-page-title-main">Faraday rotator</span>

A Faraday rotator is a polarization rotator based on the Faraday effect, a magneto-optic effect involving transmission of light through a material when a longitudinal static magnetic field is present. The state of polarization is rotated as the wave traverses the device, which is explained by a slight difference in the phase velocity between the left and right circular polarizations. Thus it is an example of circular birefringence, as is optical activity, but involves a material only having this property in the presence of a magnetic field.

<span class="mw-page-title-main">Specific rotation</span> Optical property of chiral chemical compounds

In chemistry, specific rotation ([α]) is a property of a chiral chemical compound. It is defined as the change in orientation of monochromatic plane-polarized light, per unit distance–concentration product, as the light passes through a sample of a compound in solution. Compounds which rotate the plane of polarization of a beam of plane polarized light clockwise are said to be dextrorotary, and correspond with positive specific rotation values, while compounds which rotate the plane of polarization of plane polarized light counterclockwise are said to be levorotary, and correspond with negative values. If a compound is able to rotate the plane of polarization of plane-polarized light, it is said to be “optically active”.

<span class="mw-page-title-main">Polarimetry</span> Measurement and interpretation of the polarization of transverse waves

Polarimetry is the measurement and interpretation of the polarization of transverse waves, most notably electromagnetic waves, such as radio or light waves. Typically polarimetry is done on electromagnetic waves that have traveled through or have been reflected, refracted or diffracted by some material in order to characterize that object.

The Cotton effect in physics, is the characteristic change in optical rotatory dispersion and/or circular dichroism in the vicinity of an absorption band of a substance. In a wavelength region where the light is absorbed, the absolute magnitude of the optical rotation at first varies rapidly with wavelength, crosses zero at absorption maxima and then again varies rapidly with wavelength but in the opposite direction. This phenomenon was discovered in 1895 by the French physicist Aimé Cotton (1869–1951).

<span class="mw-page-title-main">Raman optical activity</span>

Raman optical activity (ROA) is a vibrational spectroscopic technique that is reliant on the difference in intensity of Raman scattered right and left circularly polarised light due to molecular chirality.

<span class="mw-page-title-main">Polarimeter</span> Instrument for measuring optical rotation

A polarimeter is a scientific instrument used to measure optical rotation: the angle of rotation caused by passing linearly polarized light through an optically active substance.

A photoelastic modulator (PEM) is an optical device used to modulate the polarization of a light source. The photoelastic effect is used to change the birefringence of the optical element in the photoelastic modulator.

Vibrational circular dichroism (VCD) is a spectroscopic technique which detects differences in attenuation of left and right circularly polarized light passing through a sample. It is the extension of circular dichroism spectroscopy into the infrared and near infrared ranges.

<span class="mw-page-title-main">Aimé Cotton</span> French physicist

Aimé Auguste Cotton was a French physicist known for his studies of the interaction of light with chiral molecules. In the absorption bands of these molecules, he discovered large values of optical rotatory dispersion (ORD), or variation of optical rotation as a function of wavelength, as well as circular dichroism or differences of absorption between left and right circularly polarized light.

<span class="mw-page-title-main">Interference colour chart</span>

In optical mineralogy, an interference colour chart, also known as the Michel-Levy chart, is a tool first developed by Auguste Michel-Lévy to identify minerals in thin section using a petrographic microscope. With a known thickness of the thin section, minerals have specific and predictable colours in cross-polarized light, and this chart can help identify minerals. The colours are produced by the difference in speed in the fast and slow rays, also known as birefringence.

<span class="mw-page-title-main">Chiral media</span> Applied to electromagnetism

The term chiral describes an object, especially a molecule, which has or produces a non-superposable mirror image of itself. In chemistry, such a molecule is called an enantiomer or is said to exhibit chirality or enantiomerism. The term "chiral" comes from the Greek word for the human hand, which itself exhibits such non-superimposeability of the left hand precisely over the right. Due to the opposition of the fingers and thumbs, no matter how the two hands are oriented, it is impossible for both hands to exactly coincide. Helices, chiral characteristics (properties), chiral media, order, and symmetry all relate to the concept of left- and right-handedness.

<span class="mw-page-title-main">Polarization rotator</span> Optical device

A polarization rotator is an optical device that rotates the polarization axis of a linearly polarized light beam by an angle of choice. Such devices can be based on the Faraday effect, on birefringence, or on total internal reflection. Rotators of linearly polarized light have found widespread applications in modern optics since laser beams tend to be linearly polarized and it is often necessary to rotate the original polarization to its orthogonal alternative.

<span class="mw-page-title-main">Two-photon circular dichroism</span>

Two-photon circular dichroism (TPCD), the nonlinear counterpart of electronic circular dichroism (ECD), is defined as the differences between the two-photon absorption (TPA) cross-sections obtained using left circular polarized light and right circular polarized light.

References

  1. Lowry, T. Martin; Dickson, T. W. (1914). "Simple and complex rotatory dispersion". Transactions of the Faraday Society. 10 (August): 96-102. doi:10.1039/TF9141000096. ISSN   0014-7672 . Retrieved 13 February 2024.
  2. Roberts, John D.; Caserio, Marjorie C. (24 December 2014). "19.9: Optical Rotatory Dispersion and Circular Dichroism". Chemistry LibreTexts. California Institute of Technology. Retrieved 13 February 2024.