Parabolic aluminized reflector

Last updated

A parabolic aluminized reflector luminaire Par30.jpg
A parabolic aluminized reflector luminaire
20 PAR cans Stage lights.jpg
20 PAR cans

A parabolic aluminized reflector lamp (PAR lamp or simply PAR) is a type of electric lamp that is widely used in commercial, residential, and transportation illumination. It produces a highly directional beam. Usage includes theatrical lighting, locomotive headlamps, aircraft landing lights, and residential and commercial recessed lights ("cans" in the United States).

Contents

Many PAR lamps are of the sealed beam variety, with a parabolic reflector, one or more filaments, and a glass or plastic lens sealed permanently together as a unit. Originally introduced for road vehicle headlamp service, sealed beams have since been applied elsewhere. Halogen sealed beam lamps incorporate a halogen lamp within a quartz or hard glass envelope.

Construction

Sealed beam PAR lamp. When the lamp burns out or breaks, the whole assembly must be replaced. ParHeadlamp.jpg
Sealed beam PAR lamp. When the lamp burns out or breaks, the whole assembly must be replaced.

A PAR lamp consists of a light source, with lens and a parabolic reflector with a smooth aluminium surface determining the spread of the beam. The most common sealed beam type combines these three elements into an integral unit. The light source usually approximates a point source that can be focused on; tungsten filaments and halogen lamps are common, but some theatrical usage that requires a higher color temperature may use hydrargyrum medium-arc iodide (HMI) instead.

Sizes

PAR lamps come in a variety of standardized sizes. The size of a round PAR lamp is expressed as the nominal diameter of the mouth of the reflector, in eighths of an inch—so the approximate nominal lamp bell diameter in inches can be found by dividing the PAR size by 8. A PAR56, for example, is 56 eighths of an inch (7 inches) in diameter; a PAR36 is 36 eighths (4.5 inches) in diameter, and so on. Similarly, the diameter in millimeters can be found by multiplying the PAR designation by 3.175. For example, a PAR16 lamp is approximately 2 inches or 50.8 mm in diameter. [1]

The size of rectangular PAR lamps is expressed as the letters REC followed by the reflector's mouth height, the letter "X", and the reflector's mouth width—with both dimensions in millimeters. For example, REC142X200 lamps are 142  high and 200 mm wide. [2] [3]


DesignationNominal Dia.
(inch)
Nominal Dia.
(mm)
PAR648203.2
PAR567177.8
PAR465.75146.05
PAR384.75120.65
PAR364.5114.3
PAR303.7595.25
PAR202.563.5
PAR16250.8

Light beams

Depending on the parabolic reflector geometry, the configuration of the filament and its placement within the paraboloid, PAR lamps can achieve a wide range of beams, from narrow spot to wide flood. [4] The following suffixes are commonly used with PAR lamps to indicate their beam width: [5] PAR lamps are also manufactured to produce beam patterns specific to the needs of particular applications, such as low-beam and high-beam headlamps and fog and driving lights for vehicles, and warning lamps for school buses.

DescriptionSuffixBeam angle
Very Narrow Spot (VNSP)CP6012°
Narrow Spot (NSP)CP6114°
Medium Flood (MFL)CP6224°
Wide Flood (WFL)CP9570°

The suffixes given are for 1000-Watt PAR64 lamps only. The focused beam can be oval and is sometimes specified in two numbers. [5]

Uses

Automotive headlamps

Two Mercedes-Benz SLs: right with US-spec sealed-beam headlamps; left with European-spec composite replaceable-bulb headlamps Mercedes-Benz, Techno-Classica 2018, Essen (IMG 9795).jpg
Two Mercedes-Benz SLs: right with US-spec sealed-beam headlamps; left with European-spec composite replaceable-bulb headlamps

In the United States of America, sealed-beam headlamps were introduced in 1939, becoming standard equipment across all American-market vehicles starting in 1940 and remaining the only type allowed for almost four and a half decades, until the 1984 model year. Before and after those years, vehicles could have model-specific, nonstandard-shape headlamps, using any of a wide variety of replaceable light bulbs. Between 1940 and 1956, all U.S. cars had to have two 7-inch (178 mm) round headlamps with dual filaments, so each lamp provided both a high and a low beam light distribution. In 1957, a system of four sealed-beam headlamps—two per side, of 5+3/4 inches (146 mm) diameter, was allowed in some U.S. states. The following year in 1958, all states allowed the new system. Two of the lamps contained two filaments and served as low and high beam, while the other two lamps contained only one filament and were active only during high-beam operation.

From the 1975 model year, a rectangular version of the four-lamp system was legalized. The new lamps were 165 mm (6+1/2 in) wide and 100 mm (4 in) tall. For 1978, a rectangular version of the two-lamp system became legal; these measured 200 mm (8 in) wide and 142 mm (5+1/2 in) tall.

With only two round and two rectangular lamp sizes allowed, the sealed-beam headlamp mandate greatly restricted styling possibilities for automobiles. [6]

Halogen sealed-beam headlamps appeared on U.S. cars in 1979, to enable greater high beam intensity newly permitted by Federal Motor Vehicle Safety Standard 108 without unreasonably high lamp wattage. Eventually, halogen sealed-beam lights came to dominate the (U.S.) automotive lamps market.

Aircraft

Aircraft landing (ACL) lights are often sealed beams that have a very narrow beam spread. They typically have a size of PAR36 or PAR64, and run on 28 V DC. [7] They have found some use in stage lighting as well.

Outdoor and stage lighting

PAR lamps and their fixtures are widely used in theatre, concerts and motion picture production when a substantial amount of flat lighting is required for a scene. They are often mounted in can-shaped fixtures known as PARCANs, which can be used to generate colours by fitting them with colored sheets called gels. The cans are arranged into rows of different colours and identical rows placed on different sides of the stage; such assemblies made from aluminum bars are known as PARbars. [lower-alpha 1] Due to their affordability, they are ideal for colour washes in several different colours. However, because of the lack of dynamic control over the beam diameter, shape and sharpness, PARs are rarely used as Front of House lights other than for front washes but can be used for special effect lighting such as lighting from directly above or from extreme angles as well as general wash lights overhead/above stage. If used cleverly, par cans can provide low budget productions with good effects.

PAR64 sealed beam lamps are often used for these purposes; they are typically available with 250, 500 or 1000 watt power ratings. Beam spreads are designated as FL (flood), SP (spot), NSP (narrow spot), and VNSP (very narrow spot), as stamped on the back of the lamp's reflector.

PAR38 lamps, with an E22 base and with ratings up to 150W, were often used for domestic outdoor floodlight illumination for patios, backyards, and often combined with a PIR sensor switch as a security/convenience light, for example, in a driveway. Coloured versions were popular with discos and mobile DJs, however were usually only available up to 100w in coloured form and were considerably more expensive than standard PAR38 globes. In domestic applications, halogen and later on LED largely replaced the incandescent PAR38.

In situations where sunlight or other specular light is available, a white foam reflector is often used to accomplish the same effect as a PAR array. PAR cans are being replaced in some stage applications by LED stage lighting, which use less electric power and produce a wide array of saturated colors without the use of color filters, when white light is not needed.

Indoor lighting

Smaller sealed beam PAR lamps (PAR 38 and smaller) with an Edison screw base are common in indoor lighting. They can be found in recessed fixtures mounted in the ceiling or on tracks.

Lighthouses

Sealed beam lamp arrays are also in use by modern lighthouses. [8]

Electrical connector

High-power, mains-voltage, theatrical PARs usually use the bi-pin GX16d "Mogul" lamp connector; [9] G9.5 and variants are common too. Theater metal-halide lamps use G12. In addition to being used on light bulbs themselves, the G38 connectors are also found as a part of the Raylite reflector assembly, although some Raylite reflectors have "tails" which then require connection to the mains flex with the use of a ceramic connector block (ideally fixed to the can's body). [10]

In residential and office use, the usual connector for the lamp's voltage is often used. This includes Edison screw or a bayonet connector for mains-supplied PARs, or small bi-pin connectors for low voltage applications.

Variations

LED

Osram parathom PAR16.JPG
A PAR16 lamp with E27 screw for indoor retrofitting
LED par.JPG
An LED stage lighting device designed to replace PAR cans

LED retrofit equipment that match PAR lamp dimensions is made by some manufacturers. As with the case of LED MR lamps, LED PAR lamps generally use an array of individual LED elements that are unsuitable for reflector operation. Nevertheless, some degree of beam control can be obtained with aperture or lens, and LED PAR 38 replacements with a 40° spread is common.

Models built for stage lighting may use less similar dimensions. They often use a RGB color model for color-tuning abilities, though some higher-end fixtures use a 5-primary colour system (with cool and warm white LEDs) instead for better color reproduction.

PAR moving lights

Intelligent, moving PARs allow for the ability to pan and tilt the instruments through a lighting control console. These have been generally superseded by dedicated intelligent lighting fixtures, which use a different light source and offer more control over the colour and shape of the beam.


See also

Notes

  1. Bars are named according to the number of cans they hold: a four-bar holds 4 cans and vice versa.

Related Research Articles

<span class="mw-page-title-main">Stage lighting</span> Craft of lighting at performances

Stage lighting is the craft of lighting as it applies to the production of theater, dance, opera, and other performance arts. Several different types of stage lighting instruments are used in this discipline. In addition to basic lighting, modern stage lighting can also include special effects, such as lasers and fog machines. People who work on stage lighting are commonly referred to as lighting technicians or lighting designers.

<span class="mw-page-title-main">Incandescent light bulb</span> Electric light bulb with a resistively heated wire filament

An incandescent light bulb, incandescent lamp or incandescent light globe is an electric light with a filament that is heated until it glows. The filament is enclosed in a glass bulb that is either evacuated or filled with inert gas to protect the filament from oxidation. Electric current is supplied to the filament by terminals or wires embedded in the glass. A bulb socket provides mechanical support and electrical connections.

<span class="mw-page-title-main">Halogen lamp</span> Incandescent lamp variety

A halogen lamp is an incandescent lamp consisting of a tungsten filament sealed in a compact transparent envelope that is filled with a mixture of an inert gas and a small amount of a halogen, such as iodine or bromine. The combination of the halogen gas and the tungsten filament produces a halogen-cycle chemical reaction, which redeposits evaporated tungsten on the filament, increasing its life and maintaining the clarity of the envelope. This allows the filament to operate at a higher temperature than a standard incandescent lamp of similar power and operating life; this also produces light with higher luminous efficacy and color temperature. The small size of halogen lamps permits their use in compact optical systems for projectors and illumination. The small glass envelope may be enclosed in a much larger outer glass bulb, which has a lower temperature, protects the inner bulb from contamination, and makes the bulb mechanically more similar to a conventional lamp.

<span class="mw-page-title-main">Flashlight</span> Portable hand-held electric light

A flashlight (US) or electric torch (CE), usually shortened to torch, is a portable hand-held electric lamp. Formerly, the light source typically was a miniature incandescent light bulb, but these have been displaced by light-emitting diodes (LEDs) since the early 2000s. A typical flashlight consists of the light source mounted in a reflector, a transparent cover to protect the light source and reflector, a battery, and a switch, all enclosed in a case.

<span class="mw-page-title-main">Headlamp</span> Lamp mounted in the front of a vehicle

A headlamp is a lamp attached to the front of a vehicle to illuminate the road ahead. Headlamps are also often called headlights, but in the most precise usage, headlamp is the term for the device itself and headlight is the term for the beam of light produced and distributed by the device.

<span class="mw-page-title-main">Bicycle lighting</span> Illumination devices attached to bicycles

Bicycle lighting is illumination attached to bicycles whose purpose above all is, along with reflectors, to improve the visibility of the bicycle and its rider to other road users under circumstances of poor ambient illumination. A secondary purpose is to illuminate reflective materials such as cat's eyes and traffic signs. A third purpose may be to illuminate the roadway so that the rider can see the way ahead. Serving the latter purposes require much more luminous flux and thus more power.

<span class="mw-page-title-main">Emergency light</span> Backup light source used in power outages

An emergency light is a battery-backed lighting device that switches on automatically when a building experiences a power outage.

<span class="mw-page-title-main">Light fixture</span> Electrical device with an electric lamp

A light fixture, light fitting, or luminaire is an electrical lighting device containing one or more light sources, such as lamps, and all the accessory components required for its operation to provide illumination to the environment. All light fixtures have a fixture body and one or more lamps. The lamps may be in sockets for easy replacement—or, in the case of some LED fixtures, hard-wired in place.

<span class="mw-page-title-main">Fresnel lantern</span> Lantern using a Fresnel lens

A Fresnel lantern is a common lantern used in theatre that employs a Fresnel lens to wash light over an area of the stage. The lens produces a wider, soft-edged beam than a spotlight or key light, and is commonly used for back light and top light.

<span class="mw-page-title-main">Stage lighting instrument</span> Device that emits light to illuminate performers

Stage lighting instruments are used in stage lighting to illuminate theatrical productions, concerts, and other performances taking place in live performance venues. They are also used to light television studios and sound stages.

<span class="mw-page-title-main">Edison screw</span> Lightbulb socket standard (E5-E40)

Edison screw (ES) is a standard lightbulb socket for electric light bulbs. It was developed by Thomas Edison (1847–1931), patented in 1881, and was licensed in 1909 under General Electric's Mazda trademark. The bulbs have right-hand threaded metal bases (caps) which screw into matching threaded sockets. For bulbs powered by AC current, the thread is generally connected to neutral and the contact on the bottom tip of the base is connected to the "live" phase.

<span class="mw-page-title-main">Multifaceted reflector</span> Light bulb

A multifaceted reflector light bulb is a reflector housing format for halogen as well as some LED and fluorescent lamps. MR lamps were originally designed for use in slide projectors, but see use in residential lighting and retail lighting as well. They are suited to applications that require directional lighting such as track lighting, recessed ceiling lights, desk lamps, pendant fixtures, landscape lighting, retail display lighting, and bicycle headlights. MR lamps are designated by symbols such as MR16 where the diameter is represented by numerals indicating units of eighths of an inch. Common sizes for general lighting are MR16 and MR11, with MR20 and MR8 used in specialty applications. Many run on low voltage rather than mains voltage alternating current so require a power supply.

A beam projector is a lenseless stage lighting instrument with very little beam spread. It uses two reflectors. The primary reflector is a parabolic reflector and the secondary reflector is a spherical reflector. The parabolic reflector organizes the light into nearly parallel beams, and the spherical reflector is placed in front of the lamp to reflect light from the lamp back to the parabolic reflector, which reduces spill. The result is an intense shaft of light that cannot be easily controlled or modified. Beam projectors are often used to create a godspot effect. The beam projector no longer is used to the extent that it once was, as newer fixtures and PAR lamps have created easier ways to produce the effect. A similar effect can be produced using ETC Source Four PAR fixtures with a clear lens. A snoot/top hat can be added to control spill.

<span class="mw-page-title-main">LED stage lighting</span> Lighting technology

LED stage lighting is a stage lighting technology that uses light-emitting diodes (LEDs) as a light source. LED instruments are an alternative to traditional stage lights which use halogen lamp or high-intensity discharge lamps. Like other LED instruments, they have high light output with lower power consumption.

The H1 is a halogen lamp designed for use in automotive headlamps and fog and driving lamps. It has also been widely applied in emergency vehicle lights.

<span class="mw-page-title-main">Holiday lighting technology</span> Decorative lighting for festivities

Holiday lighting technology has been subject to considerable development and variation since the replacement of candles by electric lights. While originally used during the Christmas holidays as Christmas lights, modern electric light arrays have become popular around the world in many cultures and are used both during religious festivals and for other purposes unconnected to any festivities.

<span class="mw-page-title-main">Fluorescent-lamp formats</span> Types of lamp

Since their introduction as a commercial product in 1939, many different types of fluorescent lamp have been introduced. Systematic nomenclature identifies mass-market lamps as to overall shape, power rating, length, color, and other electrical and illuminating characteristics.

A lightbulb socket, lightbulb holder,light socket, lamp socket or lamp holder is a device which mechanically supports and provides electrical connections for a compatible electric lamp base. Sockets allow lamps to be safely and conveniently replaced (re-lamping). There are many different standards for lampholders, including early de facto standards and later standards created by various standards bodies. Many of the later standards conform to a general coding system in which a socket type is designated by a letter or abbreviation followed by a number.

<span class="mw-page-title-main">Dive light</span> Light used underwater by a diver

A dive light is a light source carried by an underwater diver to illuminate the underwater environment. Scuba divers generally carry self-contained lights, but surface supplied divers may carry lights powered by cable supply.

<span class="mw-page-title-main">Recessed light</span>

A recessed light or downlight is a light fixture that is installed into a hollow opening in a ceiling. When installed it appears to have light shining from a hole in the ceiling, concentrating the light in a downward direction as a broad floodlight or narrow spotlight.

References

  1. "LED Pool Light Bulbs: A Complete Guide". WAKING Lighting. Archived from the original on October 27, 2023. Retrieved December 20, 2023.
  2. [GTE Sylvania Miniature & Sealed Beam Lamp Catalog and Specification Guide, Form 207, 1989]
  3. [GE Lighting Miniature & Sealed Beam Lamps, 1992]
  4. "LED bulb is by consuming Danish home". avisen. Archived from the original on April 22, 2016. Retrieved April 7, 2016.
  5. 1 2 "Par 64". Blue Room. Archived from the original on October 1, 2018. Retrieved September 30, 2018.
  6. Horst Bauer Bosch Automotive Handbook 4th Edition Robert Bosch GmbH, Stuttgart 1996 ISBN   0-8376-0333-1 page 710
  7. GE. "GE Lamp & Ballast Products Catalog – Section 8: Miniature, Sealed Beam and Automotive Lamps" (PDF). Reynolds Online. p. 31. Retrieved December 19, 2018.
  8. "The lights in Lighthouses". photographers-resource.co.uk. Retrieved January 9, 2011.
  9. BulbAmerica. "GE Lighting Q20A/PAR56/C 20A Halogen Sealed Beam Lamp,PAR56,300W". Google Express. Retrieved December 19, 2018. With a mogul end prong (GX16d) base
  10. "OPTIMA LIGHTING PAR 64 & PAR 56 Lamp Holder". BulbAmerica . Archived from the original on July 27, 2013. Retrieved April 26, 2018.