Plastic optical fiber

Last updated

FOB wire with ferrule.png

Plastic optical fiber (POF) or polymer optical fiber is an optical fiber that is made out of polymer. Similar to glass optical fiber, POF transmits light (for illumination or data) through the core of the fiber. Its chief advantage over the glass product, other aspect being equal, is its robustness under bending and stretching.

Contents

History

Since 2014 a full family of PHY transceivers have been available in the market enabling the design and manufacturing of home networking equipment delivering Gigabit speeds into the home.[ citation needed ]

One of the most exciting developments in polymer fibers has been the development of microstructured polymer optical fibers (mPOF), a type of photonic crystal fiber.[ citation needed ]

Materials

Traditionally, PMMA (acrylic) comprises the core (96% of the cross section in a fiber 1mm in diameter), and fluorinated polymers are the cladding material. Since the late 1990s much higher performance graded-index (GI-POF) fiber based on amorphous fluoropolymer (poly(perfluoro-butenylvinyl ether), CYTOP [1] ) has begun to appear in the marketplace. [2] [3] Whereas glass fibers are only manufactured by drawing, polymer optical fibers can also be manufactured by drawing. [4]

Characteristics of PMMA POF

Applications

Data networks

POF has been called the "consumer" optical fiber because the fiber and associated optical links, connectors, and installation are all inexpensive. Due to the attenuation and distortion characteristics of PMMA fibers, they are commonly used for low-speed, short-distance (up to 100 meters) applications in digital home appliances, home networks, industrial networks (PROFIBUS, PROFINET, Sercos, EtherCAT), and car networks (MOST). The perfluorinated polymer fibers are commonly used for much higher-speed applications such as data center wiring and building LAN wiring.

In relation to the future requirements of high-speed home networking, there has been an increasing interest in POF as a possible option for next-generation Gigabit/s links inside the home. To this end, several European Research projects are active, such as POF-ALL and POF-PLUS .

Sensors

Polymer optical fibers can be used for remote sensing and multiplexing due to their low cost and high resistance. [6]

It is possible to write fiber Bragg gratings in single and multimode POF. There are advantages in doing this over using silica fiber since the POF can be stretched further without breaking, some applications are described in the PHOSFOS project page.

Standards

Optical fiber used in telecommunications is governed by European Standards EN 60793-2-40-2011.

Several standardization bodies at country, European, and worldwide levels are currently developing Gigabit communication standards for POF aimed towards home networking applications. It is expected the release at the beginning of 2012.

An IEEE study group and later task force has been meeting since then until the publication on 2017 of the IEEE802.3bv Amendment. IEEE 802.3bv defines a 1 Gigabit/s full duplex transmission over SI-POF using red LED. It is called 1000BASE-RH.

This Gigabit POF IEEE standard is based on multilevel PAM modulation a frame structure, Tomlinson-Harashima Precoding and Multilevel coset coding modulation. The combination of all these techniques has proven to be an efficient way of achieving low-cost implementations at the same time that the transmission theoretical maximum capacity of the POF is approached.[ citation needed ]

Other alternatives are schemes like DMT, PAM-2 NRZ, DFE equalization or PAM-4. VDE standard was published in 2013. [7] After the publication the IEEE asked VDE to withdraw the specification and bring all the effort to IEEE. VDE withdrew the specification and a CFI was presented to IEEE in March 2014. [8]

Related Research Articles

In telecommunications and fiber optics, a plastic-clad silica fiber or polymer-clad silica fiber (PCS) is an optical fiber that has a silica-based core and a plastic cladding. The cladding of a PCS fiber should not be confused with the polymer overcoat of a conventional all-silica fiber.

Refractive index contrast, in an optical waveguide, such as an optical fiber, is a measure of the relative difference in refractive index of the core and cladding. The refractive index contrast, Δ, is often given by , where n1 is the maximum refractive index in the core and n2 is the refractive index of the cladding. The criterion n2 < n1 must be satisfied in order to sustain a guided mode by total internal reflection. Alternative formulations include and . Normal optical fibers, constructed of different glasses, have very low refractive index contrast (Δ<<1) and hence are weakly-guiding. The weak guiding will cause a greater portion of the cross-sectional Electric field profile to reside within the cladding as compared to strongly-guided waveguides. Integrated optics can make use of higher core index to obtain Δ>1 allowing light to be efficiently guided around corners on the micro-scale, where popular high-Δ material platform is silicon-on-insulator. High-Δ allows sub-wavelength core dimensions and so greater control over the size of the evanescent tails. The most efficient low-loss optical fibers require low Δ to minimise losses to light scattered outwards.

<span class="mw-page-title-main">Single-mode optical fiber</span> Optical fiber designed to carry only a single mode of light, the transverse mode

In fiber-optic communication, a single-mode optical fiber (SMF), also known as fundamental- or mono-mode, is an optical fiber designed to carry only a single mode of light - the transverse mode. Modes are the possible solutions of the Helmholtz equation for waves, which is obtained by combining Maxwell's equations and the boundary conditions. These modes define the way the wave travels through space, i.e. how the wave is distributed in space. Waves can have the same mode but have different frequencies. This is the case in single-mode fibers, where we can have waves with different frequencies, but of the same mode, which means that they are distributed in space in the same way, and that gives us a single ray of light. Although the ray travels parallel to the length of the fiber, it is often called transverse mode since its electromagnetic oscillations occur perpendicular (transverse) to the length of the fiber. The 2009 Nobel Prize in Physics was awarded to Charles K. Kao for his theoretical work on the single-mode optical fiber. The standards G.652 and G.657 define the most widely used forms of single-mode optical fiber.

In a single-mode optical fiber, the zero-dispersion wavelength is the wavelength or wavelengths at which material dispersion and waveguide dispersion cancel one another. In all silica-based optical fibers, minimum material dispersion occurs naturally at a wavelength of approximately 1300 nm. Single-mode fibers may be made of silica-based glasses containing dopants that shift the material-dispersion wavelength, and thus, the zero-dispersion wavelength, toward the minimum-loss window at approximately 1550 nm. The engineering tradeoff is a slight increase in the minimum attenuation coefficient. Such fiber is called dispersion-shifted fiber.

<span class="mw-page-title-main">Fast Ethernet</span> Ethernet standards that carry data at the nominal rate of 100 Mbit/s

In computer networking, Fast Ethernet physical layers carry traffic at the nominal rate of 100 Mbit/s. The prior Ethernet speed was 10 Mbit/s. Of the Fast Ethernet physical layers, 100BASE-TX is by far the most common.

<span class="mw-page-title-main">Gigabit Ethernet</span> Standard for Ethernet networking at a data rate of 1 gigabit per second

In computer networking, Gigabit Ethernet is the term applied to transmitting Ethernet frames at a rate of a gigabit per second. The most popular variant, 1000BASE-T, is defined by the IEEE 802.3ab standard. It came into use in 1999, and has replaced Fast Ethernet in wired local networks due to its considerable speed improvement over Fast Ethernet, as well as its use of cables and equipment that are widely available, economical, and similar to previous standards. The first standard for faster 10 Gigabit Ethernet was approved in 2002.

All-silica fiber, or silica-silica fiber, is an optical fiber whose core and cladding are made of silica glass. The refractive index of the core glass is higher than that of the cladding. These fibers are typically step-index fibers. The cladding of an all-silica fiber should not be confused with the polymer overcoat of the fiber.

<span class="mw-page-title-main">Multi-mode optical fiber</span> Type of optical fiber mostly used for communication over short distances

Multi-mode optical fiber is a type of optical fiber mostly used for communication over short distances, such as within a building or on a campus. Multi-mode links can be used for data rates up to 800 Gbit/s. Multi-mode fiber has a fairly large core diameter that enables multiple light modes to be propagated and limits the maximum length of a transmission link because of modal dispersion. The standard G.651.1 defines the most widely used forms of multi-mode optical fiber.

<span class="mw-page-title-main">Fiber Bragg grating</span> Type of distributed Bragg reflector constructed in a short segment of optical fiber

A fiber Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by creating a periodic variation in the refractive index of the fiber core, which generates a wavelength-specific dielectric mirror. Hence a fiber Bragg grating can be used as an inline optical filter to block certain wavelengths, can be used for sensing applications, or it can be used as wavelength-specific reflector.

<span class="mw-page-title-main">Optical fiber</span> Light-conducting fiber

An optical fiber, or optical fibre, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss and are immune to electromagnetic interference. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, such as fiber optic sensors and fiber lasers.

<span class="mw-page-title-main">Ethernet physical layer</span> Electrical or optical properties between network devices

The physical-layer specifications of the Ethernet family of computer network standards are published by the Institute of Electrical and Electronics Engineers (IEEE), which defines the electrical or optical properties and the transfer speed of the physical connection between a device and the network or between network devices. It is complemented by the MAC layer and the logical link layer. An implementation of a specific physical layer is commonly referred to as PHY.

<span class="mw-page-title-main">Fiber-optic communication</span> Transmitting information over optical fiber

Fiber-optic communication is a method of transmitting information from one place to another by sending pulses of infrared or visible light through an optical fiber. The light is a form of carrier wave that is modulated to carry information. Fiber is preferred over electrical cabling when high bandwidth, long distance, or immunity to electromagnetic interference is required. This type of communication can transmit voice, video, and telemetry through local area networks or across long distances.

40 Gigabit Ethernet (40GbE) and 100 Gigabit Ethernet (100GbE) are groups of computer networking technologies for transmitting Ethernet frames at rates of 40 and 100 gigabits per second (Gbit/s), respectively. These technologies offer significantly higher speeds than 10 Gigabit Ethernet. The technology was first defined by the IEEE 802.3ba-2010 standard and later by the 802.3bg-2011, 802.3bj-2014, 802.3bm-2015, and 802.3cd-2018 standards. The first succeeding Terabit Ethernet specifications were approved in 2017.

<span class="mw-page-title-main">Fiber-optic cable</span> Cable assembly containing one or more optical fibers that are used to carry light

A fiber-optic cable, also known as an optical-fiber cable, is an assembly similar to an electrical cable but containing one or more optical fibers that are used to carry light. The optical fiber elements are typically individually coated with plastic layers and contained in a protective tube suitable for the environment where the cable is used. Different types of cable are used for optical communication in different applications, for example long-distance telecommunication or providing a high-speed data connection between different parts of a building.

<span class="mw-page-title-main">10 Gigabit Ethernet</span> Standards for Ethernet at ten times the speed of Gigabit Ethernet

10 Gigabit Ethernet is a group of computer networking technologies for transmitting Ethernet frames at a rate of 10 gigabits per second. It was first defined by the IEEE 802.3ae-2002 standard. Unlike previous Ethernet standards, 10GbE defines only full-duplex point-to-point links which are generally connected by network switches; shared-medium CSMA/CD operation has not been carried over from the previous generations of Ethernet standards so half-duplex operation and repeater hubs do not exist in 10GbE. The first standard for faster 100 Gigabit Ethernet links was approved in 2010.

<span class="mw-page-title-main">Hard-clad silica optical fiber</span>

Hard-clad silica (HCS) or polymer-clad fiber (PCF) is an optical fiber with a core of silica glass and an optical cladding made of special plastic. In contrast to all-silica fiber, the core and cladding can be separated from each other.

<span class="mw-page-title-main">PHOSFOS</span>

PhoSFOS is a research and technology development project co-funded by the European Commission.

Terabit Ethernet (TbE) is Ethernet with speeds above 100 Gigabit Ethernet. The 400 Gigabit Ethernet and 200 Gigabit Ethernet standard developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet was approved on December 6, 2017. On February 16, 2024 the 800 Gigabit Ethernet standard developed by the IEEE P802.3df Task Force was approved.

Cladding in optical fibers is one or more layers of materials of lower refractive index in intimate contact with a core material of higher refractive index.

25 Gigabit Ethernet and 50 Gigabit Ethernet are standards for Ethernet connectivity in a datacenter environment, developed by IEEE 802.3 task forces 802.3by and 802.3cd and are available from multiple vendors.

References

  1. "What's CYTOP?". agc.com. Retrieved September 7, 2015.
  2. "Graded-Index Polymer Optical Fiber (GI-POF)" (PDF). thorlabs.com. Retrieved September 7, 2015.
  3. "Manufacture of Perfluorinated Plastic Optical Fibers" (PDF). chromisfiber.com. 2004. Retrieved September 7, 2015.
  4. "Plastic optical fibers, explained by RP; polymer". RP Photonics Encyclopedia.
  5. 1 2 3 "The FOA Reference For Fiber Optics - Optical Fiber". thefoa.org. February 12, 2011. Retrieved August 24, 2013.
  6. Lopes N.; Sequeira F.; Gomes M.T.S.R.; Nogueira R.; Bilro L.; Zadorozhnaya O.A.; Rudnitskaya A.M. (2015). "Fiber optic sensor modified by grafting of the molecularly imprinted polymer for the detection of ammonium in aqueous media". Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 15 (4): 568–577. doi: 10.17586/2226-1494-2015-15-4-568-577 .
  7. "DIN VDE V 0885-763 VDE V 0885-763:2013-09 - Standards - VDE Publishing House". Archived from the original on September 9, 2014. Retrieved September 9, 2014.
  8. "Gigabit over Plastic Optical Fibre Call For Interest" (PDF). ieee802.org. Retrieved May 5, 2024.

Literature