Power-egg

Last updated
A BMW 801 Kraftei (power egg), being unloaded from a Gotha Go 242 transport glider. Russia, March 1943. Note the engine is already fitted with its cowling and cooling fan Bundesarchiv Bild 101I-332-3096-12, Russland, Entladen eines Lastenseglers Go 242.jpg
A BMW 801 Kraftei (power egg), being unloaded from a Gotha Go 242 transport glider. Russia, March 1943. Note the engine is already fitted with its cowling and cooling fan

A power-egg is a complete "unitized" modular engine installation, consisting of engine and all ancillary equipment, which can be swapped between suitably designed equipment, with standardised quick-changing attachment points and connectors.

Contents

In aircraft so designed, the power-egg is typically removed before mean time to failure is reached and a fresh one installed, the removed engine then being sent for maintenance. Spare power-eggs may be stored in sealed containers, to be opened when needed.

The power-egg or Kraftei format was used in some German Second World War era aircraft, particularly for twin or multi-engined airframe designs. It existed in two differing formats – the initial Motoranlage format which used some specialized added components depending on what airframe it was meant for use on, and the Triebwerksanlage format, a more complete unitization format usually including exhaust and oil cooling systems.

Applications

Germany

Junkers Ju 88 RAF Hendon.jpg
A surviving Junkers Ju 88R-1 night fighter with Kraftei unitized-installation BMW 801 engines, RAF Museum London, 2007
Junkers Ju 88 360043 (right wing).jpg
The same aircraft with its engines removed, showing the bulkhead mounting points, 2016

Inline and radial engines were both incorporated into the Kraftei concept: the Junkers Jumo 211 was a pioneering example of engine unitization, as used on both the Junkers Ju 88 using a novel annular radiator for both main engine coolant and engine oil cooling needs (viewable on the National Museum of the U.S. Air Force's restored Ju 88D-1 reconnaissance aircraft [1] ), with exactly the same nacelle packaging used to power the Messerschmitt Me 264 V1's first flights. Both the examples of the Dornier Do 217 medium bomber powered by inline engines, and the Axis Powers' largest-flown powered aircraft of any type, the Blohm & Voss BV 238 flying boat used essentially the same unitized Daimler-Benz DB 603 powerplants, complete with "chin" radiators under the nacelles as integral components. A differing Kraftei physical packaging is also believed to have been crafted by the Heinkel firm for the DB 603 engines used on its Heinkel He 219A night fighter, as what appears to be the same exact engine installation design used for the He 219A was also used for the quartet of ordered airframes for the same firm's He 177B four-DB 603-engined heavy bomber design's prototype series, as both airframe types' engine "units" used annular radiators and cylindrical cowls of identical appearance to enclose them.[ citation needed ]

The air-cooled BMW 801 fourteen-cylinder, twin-row radial engine was also provided in both formats for a number of German designs, especially for twin and multi-engined airframes, with the "M" or "T" first suffix letter designating whether it was a Motoranlage (the original format of the Kraftei concept) or the more comprehensively consolidated Triebwerksanlage format unitized powerplant – the BMW-designed forward cowling ring always used with the 801 incorporated the engine's oil cooler, making it an easy task for aviation engineers to use for such a "unitized" mounting concept.[ citation needed ]

One known surviving Motoranlage-packaged BMW 801 radial still exists and is on restored display at the New England Air Museum, Bradley International Airport, Windsor Locks, CT, [2] with preserved examples of a Ju 88R-1 night fighter and Ju 388L-1 reconnaissance aircraft, one each in the United Kingdom and the United States respectively, also having unitized Kraftei-installation BMW 801 radials on them.[ citation needed ]

Soviet Union

Project 651E, originally envisaged as a modification of the Juliett-class submarine, consisted of a small mostly self-contained additional 600 kW nuclear reactor, model VAU-6, the so-called Dollezhal egg. This nuclear powerpack aimed to greatly prolong submerged capabilities of what was otherwise a normal diesel-electric submarine with long duration idling and underwater recharging of batteries. The system was developed but did not see unclassified service through 1985. [3]

United Kingdom

A Merlin-powered, Beaufighter night fighter Mark II of No. 255 Squadron RAF at RAF Hibaldstow, September 1941, showing the Merlin Power Plants later used on the Lancaster. 255 Squadron RAF Beaufighter MK II at RAF Hibaldstow Sept 1941.jpg
A Merlin-powered, Beaufighter night fighter Mark II of No. 255 Squadron RAF at RAF Hibaldstow, September 1941, showing the Merlin Power Plants later used on the Lancaster.

A scheme for unitised engine installations was initiated by the Air Ministry in 1937 and after consultation with the Society of British Aircraft Constructors (SBAC) a system was devised allowing standardised dimensions and bulkhead fittings for both inline and radial engine installations of similar power. [4]

Post-war CASA 2.111 (Spanish-built Heinkel He 111) with Rolls-Royce Merlin power plants of the type originally used on the Beaufighter II and Lancaster CASA C-2.111F AN1109841.jpg
Post-war CASA 2.111 (Spanish-built Heinkel He 111) with Rolls-Royce Merlin power plants of the type originally used on the Beaufighter II and Lancaster

The Bristol Aeroplane Company devised an installation known as a "power egg" for the Hercules engine in 1938, [5] an example of which was exhibited at the 1938 Paris Aeronautical Salon. [6] The Hercules installation was used on the Bristol Beaufighter, Armstrong Whitworth Albemarle, Vickers Wellington, Short Stirling, and Handley Page Halifax. [7]

Universal Power Plant (UPP) Merlin 85 installations on an Avro Lincoln Avro Lincoln of 1 SQN RAAF at RAF Tengah in 1950.jpg
Universal Power Plant (UPP) Merlin 85 installations on an Avro Lincoln

After an early "Power Unit" installation was devised by Rolls-Royce (RR) for the Merlin X and used in the Armstrong Whitworth Whitley and Vickers Wellington, a more advanced "Power Plant" design was devised for the Merlin XX, [8] a unitized Merlin XX-series engine installation and nacelle being designed and first used on the Beaufighter Mark II which was later also used on the Miles M.20, Avro Lancaster and Avro York, and the post-war CASA 2.111. Merlin Power Plant production rose from just over 100 in 1939 to nearly 14,000 by 1944, mostly destined for the Lancaster. [9]

The later Universal Power Plant (UPP) Griffon installations on an Avro Shackleton. Avro 696 Shackleton AEW2, UK - Air Force AN1667777.jpg
The later Universal Power Plant (UPP) Griffon installations on an Avro Shackleton.

A new installation was subsequently designed as the "Universal Power Plant" (UPP) radiator and cowling installation developed for the Avro Lincoln (Merlin 65, 68, and 85) and also used on the Vickers Windsor (Merlin 85), and subsequently used on the Avro Tudor (Merlin 100-series), Canadair North Star/Argonaut (Merlin 600-series), and Avro Shackleton (Griffon 61 and 62).[ citation needed ]

Capable of mounting either the 27 litre Merlin or the larger 37 litre Griffon, the UPP attached to the nacelle firewall via the SBAC standard 56 in (1.4 m) circular bulkhead. In the North Star (A Canadian-built variant of the Douglas DC-4) the UPP design had to be changed slightly due to having to use the non-standard Douglas 60 in (1.5 m) DC-4 bulkhead attachment, resulting in the North Star's cowling panels being tapered slightly rather than parallel-sided. [10] The UPP installation had the advantage that all engines were interchangeable between nacelle positions, i.e., an inboard engine could be exchanged with an outboard engine, and engine types (Merlin or Griffon) and Mark No.s could be mixed and flown on the same aircraft, a Hucknall Lancaster test bed being flown with two Merlins for the North Star in one position, and with two Merlins for the Tudor in the others. [11]

Rolls-Royce continued the practice of unitised engine packages post-war with the Dart and Tyne turboprops, and later with podded jet engines such as the Conway and RB211 being supplied as complete RR-designed units with all cowling panels and nacelle fittings, including thrust reverser, ready for attachment to the engine pylon. [12]

United States

In the United States Pratt & Whitney produced a R-2180-E Twin Wasp E "power egg" installation certificated in 1945 for use as an engine upgrade for the Douglas DC-4, however finding few buyers, it was eventually only used on the Saab 90 Scandia. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Rolls-Royce Merlin</span> Aircraft engine family by Rolls-Royce

The Rolls-Royce Merlin is a British liquid-cooled V-12 piston aero engine of 27-litre capacity. Rolls-Royce designed the engine and first ran it in 1933 as a private venture. Initially known as the PV-12, it was later called Merlin following the company convention of naming its four-stroke piston aero engines after birds of prey.

<span class="mw-page-title-main">BMW 801</span> German aircraft engine developed by BMW during World War II

The BMW 801 was a powerful German 41.8-litre (2,550 cu in) air-cooled 14-cylinder-radial aircraft engine built by BMW and used in a number of German Luftwaffe aircraft of World War II. Production versions of the twin-row engine generated between 1,560 and 2,000 PS. It was the most produced radial engine of Germany in World War II with more than 61,000 built.

<span class="mw-page-title-main">Junkers Ju 188</span> Type of aircraft

The Junkers Ju 188 "Rächer" (avenger) was a German Luftwaffe high-performance medium bomber built during World War II, the planned follow-up to the Ju 88 with better performance and payload. It was produced only in limited numbers, due both to the presence of improved versions of the Ju 88, as well as the increasingly effective Allied strategic bombing campaign against German industry and the resulting focus on fighter production.

<span class="mw-page-title-main">Avro Manchester</span> British twin-engine heavy bomber

The Avro 679 Manchester was a British twin-engine heavy bomber developed and manufactured by the Avro aircraft company in the United Kingdom. While not being built in great numbers, it was the forerunner of the famed and vastly more successful four-engined Avro Lancaster, which was one of the most capable strategic bombers of the Second World War.

<span class="mw-page-title-main">Heinkel He 177 Greif</span> German heavy bomber during WW2

The Heinkel He 177 Greif (Griffin) was a long-range heavy bomber flown by the Luftwaffe during World War II. The introduction of the He 177 to combat operations was significantly delayed, by both problems with the development of its engines and frequent changes to its intended role. Nevertheless, it was the only long-range, heavy bomber to become operational with the Luftwaffe during the war. The He 177 had a payload/range capability similar to that of four-engined heavy bombers used by the Allies in the European theatre.

<span class="mw-page-title-main">Heinkel He 277</span> German strategic bomber design during WW2.

The Heinkel He 277 was a four-engine, long-range heavy bomber design, originating as a derivative of the He 177, intended for production and use by the German Luftwaffe during World War II. The main difference was in its engines. While the He 177 used four engines in two coupled pairs which proved troublesome, the He 277 was intended to use four unitized BMW 801E 14-cylinder radial engines, in single nacelle installations.

<span class="mw-page-title-main">Dornier Do 217</span> 1940 bomber aircraft family by Dornier

The Dornier Do 217 was a bomber used by the German Luftwaffe during World War II as a more powerful development of the Dornier Do 17, known as the Fliegender Bleistift. Designed in 1937 and 1938 as a heavy bomber but not meant to be capable of the longer-range missions envisioned for the larger Heinkel He 177, the Do 217's design was refined during 1939 and production began in late 1940. It entered service in early 1941 and by the beginning of 1942 was available in significant numbers.

<span class="mw-page-title-main">Junkers Ju 90</span> Type of aircraft

The Junkers Ju 90 was a 40-seat, four-engine airliner developed for and used by Deutsche Luft Hansa shortly before World War II. It was based on the rejected Ju 89 bomber. During the war, the Luftwaffe pressed them into service as military transports.

<span class="mw-page-title-main">Bristol 188</span> British supersonic research aircraft

The Bristol Type 188 is a supersonic research aircraft designed and produced by the British aircraft manufacturer Bristol Aeroplane Company. It was nicknamed the Flaming Pencil in reference to its length and relatively slender cross-section as well as its intended purpose.

<span class="mw-page-title-main">Bomber B</span> Failed 1939-1943 Luftwaffe medium bomber program

Bomber B was a German military aircraft design competition organised just before the start of World War II intended to develop a second-generation high-speed bomber for the Luftwaffe. The new designs would be a direct successor to the Schnellbomber philosophy of the Dornier Do 17 and Junkers Ju 88, relying on high speed as its primary defence. Bomber B would be a much larger and more capable aircraft, with range and payload far greater than the Schnellbomber, surpassing the largest conventional designs then under consideration. The winning design was intended to form the backbone of the Luftwaffe's bomber force, replacing the wide collection of semi-specialized designs then in service. The Reich Air Ministry was so optimistic that more modest projects were generally cancelled; when the project failed the Luftwaffe was left with hopelessly outdated aircraft.

<span class="mw-page-title-main">Supermarine Spitfire (late Merlin-powered variants)</span> Late Merlin-powered variants of the Supermarine Spitfire

The British Supermarine Spitfire was facing several challenges by mid-1942. The debut of the formidable Focke-Wulf Fw 190 in late 1941 had caused problems for RAF fighter squadrons flying the latest Spitfire Mk Vb. Rolls-Royce engineers were already working on a new version of the Merlin incorporating a two-stage supercharger; the combination of the improved Merlin and the Spitfire Mk Vc airframe in a "stop-gap" design allowed the RAF to combat the Fw 190 on equal terms.

<span class="mw-page-title-main">Rolls-Royce Griffon</span> 1930s British piston aircraft engine

The Rolls-Royce Griffon is a British 37-litre capacity, 60-degree V-12, liquid-cooled aero engine designed and built by Rolls-Royce Limited. In keeping with company convention, the Griffon was named after a bird of prey, in this case the griffon vulture.

<span class="mw-page-title-main">Hawker Tornado</span> Type of aircraft

The Hawker Tornado was a British single-seat fighter aircraft design of the Second World War for the Royal Air Force as a replacement for the Hawker Hurricane. The planned production of Tornados was cancelled after the engine it was designed to use, the Rolls-Royce Vulture, proved unreliable in service. A parallel airframe that used the Napier Sabre engine continued into production as the Hawker Typhoon.

<span class="mw-page-title-main">Rolls-Royce R</span> 1929 British aero engine

The Rolls-Royce R is a British aero engine that was designed and built specifically for air racing purposes by Rolls-Royce Limited. Nineteen R engines were assembled in a limited production run between 1929 and 1931. Developed from the Rolls-Royce Buzzard, it was a 37-litre capacity, supercharged V-12 capable of producing just under 2,800 horsepower (2,090 kW), and weighed 1,640 pounds (770 kg). Intensive factory testing revealed mechanical failures which were remedied by redesigning the components, greatly improving reliability.

<span class="mw-page-title-main">Avro Ashton</span> 1950s British airliner prototype

The Avro 706 Ashton was a British prototype jet airliner made by Avro during the 1950s. Although it flew nearly a year after the de Havilland Comet, it represented an experimental programme and was never intended for commercial use.

<span class="mw-page-title-main">Avro Tudor</span> British airliner with 4 piston engines, 1945

The Avro Type 688 Tudor was a British piston-engined airliner based on Avro's four-engine Lincoln bomber, itself a descendant of the famous Lancaster heavy bomber, and was Britain's first pressurised airliner. Customers saw the aircraft as little more than a pressurised DC-4, and few orders were forthcoming, important customers preferring to buy US aircraft. The tailwheel undercarriage layout was also dated and a disadvantage.

<span class="mw-page-title-main">Junkers Ju 252</span> German transport aircraft

The Junkers Ju 252 was a German cargo aircraft that made its first flight in late October 1941. The aircraft was planned as a replacement for the Junkers Ju 52/3m in commercial airline service, but only a small number were built as cargo aircraft for the Luftwaffe.

<span class="mw-page-title-main">Junkers Ju 488</span> Type of aircraft

The Junkers Ju 488 was a proposed four-engined German heavy strategic bomber under development in World War II. It was based on the twin-engined Ju 188 series but with additional engines mounted on a new wing inner section. One prototype was begun but never finished.

<span class="mw-page-title-main">Rolls-Royce Mustang X</span> Experimental variant of the P-51 Mustang

The North American Mustang X, also known as the "Rolls-Royce Mustang") was an experimental variant of the North American Mustang I, an aircraft funded the British Purchasing Commission and designed and developed By North American Aviation in 1940. It is distinct from the Merlin-powered P-51B/C that later followed. The development proceeded incorporating a Rolls-Royce Merlin 65 medium-high altitude engine along with numerous modifications, in an experimental programme undertaken by the Rolls-Royce company in 1942.

<span class="mw-page-title-main">Canadair North Star</span> Canadian airliner with 4 piston engines, 1946

The Canadair North Star is a 1940s Canadian development, for Trans-Canada Air Lines (TCA), of the Douglas DC-4. Instead of radial piston engines used by the Douglas design, Canadair used Rolls-Royce Merlin V12 engines to achieve a higher cruising speed of 325 mph (523 km/h) compared with the 246 mph (396 km/h) of the standard DC-4. Requested by TCA in 1944, the prototype flew on 15 July 1946. The type was used by various airlines and by the Royal Canadian Air Force (RCAF). It proved to be reliable but noisy when in service through the 1950s and into the 1960s. Some examples continued to fly into the 1970s, converted to cargo aircraft.

References

  1. NMUSAF's Ju 88D-1 showing its unitized Junkers Jumo 211 inverted V12 engine nacelles
  2. "BMW 801-ML (801C)". New England Air Museum. Archived from the original on 23 September 2013. Retrieved 27 March 2022.
  3. "1VAU-6 Auxiliary Nuclear Power Plant (ANPP) Dollezhal eggs - Submarines". www.globalsecurity.org. Retrieved 2020-12-26.
  4. "1947 | 2167 | Flight Archive". Flightglobal.com. Retrieved 2016-11-20.
  5. J.A.T. "Interchangability" Flight 16 November 1939 p404-405
  6. "power plant | complete power | bristol aeroplane | 1944 | 2048 | Flight Archive". www.flightglobal.com. Archived from the original on 2018-01-08.
  7. "power plant | fireproof bulkhead | flight november | 1942 | 2324 | Flight Archive". Flightglobal.com. 1942-11-05. Retrieved 2016-11-20.
  8. "power plants | pdf archive | flight pdf | 1942 | 1798 | Flight Archive". Flightglobal.com. 1942-08-27. Retrieved 2016-11-20.
  9. "rolls-royce | rolls-royce griffon | avro lancaster | 1945 | 1508 | Flight Archive". Flightglobal.com. 1945-08-02. Retrieved 2016-11-20.
  10. "power plant | universal power | merlin | 1947 | 0229 | Flight Archive". Flightglobal.com. Retrieved 2016-11-20.
  11. "lancaster | avro lincoln | 1947 | 0230 | Flight Archive". Flightglobal.com. 1947-02-13. Retrieved 2016-11-20.
  12. "mcdonnell douglas | airbus industrie | rolls-royce | 1976 | 1767 | Flight Archive". Flightglobal.com. Retrieved 2016-11-20.
  13. "World Encyclopedia of Aero Engines - 5th edition" by Bill Gunston, Sutton Publishing, 2006, P.164