RunBot

Last updated
RunBot RunBot biped walking robot by Tao Geng.jpg
RunBot

RunBot [1] [2] is a miniature bipedal robot which belongs to the class of limit cycle walkers. Instead of using a central pattern generator it uses reflexes which generate the gait. The reflexes are triggered by ground contact sensors in the feet which then activate the motors. The generation of the walking gait is straightforward: when a foot touches the ground the other leg is lifted upwards so that the robot falls forward. This then causes this leg to touch the ground and so forth. The walking speed can be improved by means of reinforcement learning because there are only a few parameters in this scheme. RunBot was built in 2005 by Tao Geng as part of his PhD under supervision of Prof Woergoetter and after an idea by Dr Porr to use a walking robot to benchmark reflex based reinforcement learning rules. Its movements and adaptability are based on the work of neurophysiologist Nikolai Bernstein. [3]

Contents

Since its inception the RunBot has undergone numerous design iterations, [4] [5] for example where a moveable upper body mass on the robot keeps the walking pattern stable even on uneven terrain.

Design

The locomotion system is kept simple with four motors: one on each of two knees, one on each of two hips. The sensory system is of similar simplicity, with the ability to detect the ground contact and the angles of the hips/knee motors. The motors are controlled by force and not by angle.

Related Research Articles

Bipedalism Terrestrial locomotion using two limbs

Bipedalism is a form of terrestrial locomotion where an organism moves by means of its two rear limbs or legs. An animal or machine that usually moves in a bipedal manner is known as a biped, meaning 'two feet'. Types of bipedal movement include walking, running, and hopping.

Walking Gait of locomotion among legged animals

Walking is one of the main gaits of terrestrial locomotion among legged animals. Walking is typically slower than running and other gaits. Walking is defined by an 'inverted pendulum' gait in which the body vaults over the stiff limb or limbs with each step. This applies regardless of the usable number of limbs—even arthropods, with six, eight, or more limbs, walk.

Gait

Gait is the pattern of movement of the limbs of animals, including humans, during locomotion over a solid substrate. Most animals use a variety of gaits, selecting gait based on speed, terrain, the need to maneuver, and energetic efficiency. Different animal species may use different gaits due to differences in anatomy that prevent use of certain gaits, or simply due to evolved innate preferences as a result of habitat differences. While various gaits are given specific names, the complexity of biological systems and interacting with the environment make these distinctions "fuzzy" at best. Gaits are typically classified according to footfall patterns, but recent studies often prefer definitions based on mechanics. The term typically does not refer to limb-based propulsion through fluid mediums such as water or air, but rather to propulsion across a solid substrate by generating reactive forces against it.

Gait (human) a pattern of limb movements made during locomotion.

A gait is a pattern of limb movements made during locomotion. Human gaits are the various ways in which a human can move, either naturally or as a result of specialized training. Human gait is defined as bipedal, biphasic forward propulsion of the center of gravity of the human body, in which there are alternate sinuous movements of different segments of the body with least expenditure of energy. Different gait patterns are characterized by differences in limb-movement patterns, overall velocity, forces, kinetic and potential energy cycles, and changes in the contact with the ground.

Robot locomotion is the collective name for the various methods that robots use to transport themselves from place to place.

Passive dynamics refers to the dynamical behavior of actuators, robots, or organisms when not drawing energy from a supply. Depending on the application, considering or altering the passive dynamics of a powered system can have drastic effects on performance, particularly energy economy, stability, and task bandwidth. Devices using no power source are considered "passive", and their behavior is fully described by their passive dynamics.

Central pattern generators (CPGs) are biological neural circuits that produce rhythmic outputs in the absence of rhythmic input. They are the source of the tightly-coupled patterns of neural activity that drive rhythmic and stereotyped motor behaviors like walking, swimming, breathing, or chewing. The ability to function without input from higher brain areas still requires modulatory inputs, and their outputs are not fixed. Flexibility in response to sensory input is a fundamental quality of CPG-driven behavior. To be classified as a rhythmic generator, a CPG requires:

  1. "two or more processes that interact such that each process sequentially increases and decreases, and
  2. that, as a result of this interaction, the system repeatedly returns to its starting condition."

An Nv network is a term used in BEAM robotics referring to the small electrical Neural Networks that make up the bulk of BEAM-based robot control mechanisms.

Hexapod (robotics) Type of robot

A six-legged walking robot should not be confused with a Stewart platform, a kind of parallel manipulator used in robotics applications.

Gait training or gait rehabilitation is the act of learning how to walk, either as a child, or, more frequently, after sustaining an injury or disability. Normal human gait is a complex process, which happens due to co-ordinated movements of the whole of the body, requiring the whole of Central Nervous System - the brain and spinal cord, to function properly. Any disease process affecting the brain, spinal cord, peripheral nerves emerging from them supplying the muscles, or the muscles itself can cause deviations of gait. The process of relearning how to walk is generally facilitated by Physiatrists or Rehabilitation medicine (PM&R) consultants, physical therapists or physiotherapists, along with occupational therapists and other allied specialists. The most common cause for gait impairment is due to an injury of one or both legs. Gait training is not simply re-educating a patient on how to walk, but also includes an initial assessment of their gait cycle - Gait analysis, creation of a plan to address the problem, as well as teaching the patient on how to walk on different surfaces. Assistive devices and splints (orthosis) are often used in gait training, especially with those who have had surgery or an injury on their legs, but also with those who have balance or strength impairments as well.

Legged robot Type of mobile robot

Legged robots are a type of mobile robot which use articulated limbs, such as leg mechanisms, to provide locomotion. They are more versatile than wheeled robots and can traverse many different terrains, though these advantages require increased complexity and power consumption. Legged robots often imitate legged animals, such as humans or insects, in an example of biomimicry.

Robotics Design, construction, operation, and application of robots

Robotics is an interdisciplinary branch of computer science and engineering. Robotics involves design, construction, operation, and use of robots. The goal of robotics is to design machines that can help and assist humans. Robotics integrates fields of mechanical engineering, electrical engineering, information engineering, mechatronics, electronics, bioengineering, computer engineering, control engineering, software engineering, mathematics, etc.

Object-Action Complexes (OACs) are proposed as a universal representation enabling efficient planning and execution of purposeful action at all levels of a cognitive architecture. OACs combine the representational and computational efficiency for purposes of search of STRIPS rules and the object- and situation-oriented concept of affordance with the logical clarity of the event calculus. Affordance is the relation between a situation, usually including an object of a defined type, and the actions that it allows. While affordances have mostly been analyzed in their purely perceptual aspect, the OAC concept defines them more generally as state transition functions suited to prediction. Such functions can be used for efficient forward chaining planning, learning, and execution of actions represented simultaneously at multiple levels in an embodied agent architecture.

Arm swing in human locomotion

Arm swing in human bipedal walking is a natural motion wherein each arm swings with the motion of the opposing leg. Swinging arms in an opposing direction with respect to the lower limb reduces the angular momentum of the body, balancing the rotational motion produced during walking. Although such pendulum-like motion of arms is not essential for walking, recent studies point that arm swing improves the stability and energy efficiency in human locomotion. Those positive effects of arm swing have been utilized in sports, especially in racewalking and sprinting.

Neuromechanics of orthoses refers to how the human body interacts with orthoses. Millions of people in the U.S. suffer from stroke, multiple sclerosis, postpolio, spinal cord injuries, or various other ailments that benefit from the use of orthoses. Insofar as active orthoses and powered exoskeletons are concerned, the technology to build these devices is improving rapidly, but little research has been done on the human side of these human-machine interfaces.

Proportional myoelectric control

Proportional myoelectric control can be used to activate robotic lower limb exoskeletons. A proportional myoelectric control system utilizes a microcontroller or computer that inputs electromyography (EMG) signals from sensors on the leg muscle(s) and then activates the corresponding joint actuator(s) proportionally to the EMG signal.

Cutaneous reflex in human locomotion

Cutaneous, or skin reflexes, are activated by skin receptors and play a valuable role in locomotion, providing quick responses to unexpected environmental challenges. They have been shown to be important in responses to obstacles or stumbling, in preparing for visually challenging terrain, and for assistance in making adjustments when instability is introduced. In addition to the role in normal locomotion, cutaneous reflexes are being studied for their potential in enhancing rehabilitation therapy (physiotherapy) for people with gait abnormalities.

MABEL is a robot engineered in 2009 by researchers at the University of Michigan, which is well known for being the world's fastest bipedal (two-legged) robot with knees. MABEL is able to reach speeds of up to 3.6 m/s (6.8 mph). The name MABEL is an acronym for Michigan Anthropomorphic Biped With Electronic Legs. The creators include J.W. Grizzle, Jonathan Hurst, Hae-Won Park, Koushil Sreenath, and Alireza Ramezani. MABEL weighs 143 pounds with most of its weight being in the top torso area. The legs contain large springs and are jointed to form knees. The robot is attached to a safety boom for lateral stability.

Robotic prosthesis control is a method for controlling a prosthesis in such a way that the controlled robotic prosthesis restores a biologically accurate gait to a person with a loss of limb. This is a special branch of control that has an emphasis on the interaction between humans and robotics.

Mesencephalic locomotor region

The mesencephalic locomotor region (MLR) is a functionally defined area of the midbrain that is associated with the initiation and control of locomotor movements in vertebrate species.

References

  1. Geng, T.; Porr, B.; Wörgötter, F. (2006) A Reflexive Neural Network for Dynamic Biped Walking Control. Neural Computation, May 2006, Vol. 18, No. 5, Pages 1156-1196 Posted Online March 13, 2006. {{doi:10.1162/neco.2006.18.5.1156}}
  2. T. Geng; B. Porr; and F. Wörgötter (2006) Fast Biped Walking with A Sensor-driven Neuronal Controller and Real-time Online Learning. International Journal of Robotics Research, 25(3), p 243-259, March 2006, Sage press.
  3. "Record speed set by walking robot". BBC News Online . 2006-05-04. Retrieved 2007-07-14.
  4. Geng, T.; Porr, B.; Woergoetter, F. (2006) Fast biped walking with a reflexive controller and real-time policy searching. Advances in Neural Information Processing Systems 18. MIT Press, Cambridge, MA
  5. Manoonpong, P.; Geng, T.; Kulvicius, T.; Bernd Porr; Woergoetter, F. (2007). Adaptive, Fast Walking in a Biped Robot under Neuronal Control and Learning. PLoS (Public Library of Science) Computational Biology (PLoS Comput Biol), 3(7), e134. doi : 10.1371/journal.pcbi.0030134

Runbot's creators recorded demonstrations of RunBot: