Small Satellite Program (United States Naval Academy)

Last updated

The United States Naval Academy (USNA) Small Satellite Program (SSP) [1] was founded in 1999 to actively pursue flight opportunities for miniature satellites designed, constructed, tested, and commanded or controlled by Midshipmen. The Naval Academy's aerospace laboratory facilities are some of the most advanced and extensive in the country. [2] These facilities include structures labs, propulsion and rotor labs, simulation labs, wind tunnels with flow velocities ranging from subsonic to supersonic, computer labs, and the Satellite Ground Station. [3] The SSP provides funds for component purchase and construction, travel in support of testing and integration, coordination with The US Department of Defense or National Aeronautics and Space Administration (NASA) laboratories or with universities for collaborative projects, and guides Midshipmen through the Department of Defense (DoD) Space Experiments Review Board (SERB) flight selection process.

Contents

The satellite development process is a multi-semester effort requiring the contributions of Midshipmen from two distinct groups: 1) Senior Capstone Design Team involving several consecutive graduating classes and 2) Extra Curricular Activity open to all four classes and any majors program. In the senior capstone class, First Class Midshipmen studying aerospace engineering/astronautical track, take a Spacecraft Design and initiate the satellite building process in the fall semester with the identification of the mission and determination of requirements followed by development of the conceptual design. In the spring semester the graduating midshipmen will conduct assembly, testing, and final preparations of the satellite for launch. An extra curricular group consisting of all classes and open to all majors also contribute to SSP and is designed to further develop midshipmen interaction with space rated projects. The group often aids and assists the senior capstone team, however they design, build, construct and test their own platforms.

The scope of the projects supported by SSP is limited by the resources of the USNA Department of Aerospace Engineering. The Midshipmen participating in SSP-sponsored projects are predominantly drawn from First Class (senior) majors in aerospace engineering who have chosen to concentrate on astronautics.

List of Satellites

List of USNA Satellites
SatelliteUSNA DesignatorLaunch DateDe-Orbit DateStatus
SapphireUSNA-02001
PCSatUSNA-12001*ACTIVE
PCSat-2 (ISS)USNA-2July 2005
PCSat-3 (ISS)USNA-3July 2005
ANDEUSNA-4
MidSTARUSNA-5March 2007
RAFT/MARScomUSNA-6
PSATUSNA-7May 2015*ACTIVE
DRAGONsatUSNA-8
MidSTAR IIUSNA-9Cancelled
USS LangleyUSNA-10May 2015Non-responsive
BRICSatUSNA-11May 2015*ACTIVE
QIKCOM-1 (hosted)USNA-12Sep 2015Waiting Deployment
QIKCOM-2 (hosted)USNA-13Late 2016Manifested
BRICSat-2USNA-14Sep 2017Manifested
PSAT-2USNA-15Sep 2017Manifested
HFSatUSNA-16Under Construction
NSatUSNA-17Under Construction
TUGSatUSNA-18Under Construction
RSatUSNA-19Under Construction

PCSat

PCsat, or Prototype Communication Satellite, was the United States Naval Academy's first space operating system. Launched in 2001 from Kodiak, Alaska, PCSat provided 2-way hand held communications for students and APRS travelers within the Amateur Satellite Service. PCSat remains the oldest surviving midshipmen built satellite in space. See http://aprs.org/pcsat.html

PCSat-2 & PCSat-3

Both subsequent PCSats were repetitive designs from the first successful PCSat. These two satellites were launched to the ISS on 26 July 2005 and activated 8 days later in an external "suitcase" installed by an astronaut during a spacewalk. It was opened to expose the solar cells and to activate the data transponder. In addition to supporting the communications experiments, PCSat-2/3 also provided telemetry, command and control, and a NRL solar cell experiment (http://aprs.org/pcsat2.html).

Sapphire

In 2001 Naval Academy midshipmen paired with students from Stanford University and George Washington University to launch and operate a second satellite dubbed Sapphire. Sapphire was initially equipped with a camera, voice synthesizer, and an infrared Earth Sensor and later was modified to also support the APRS network in support of PCSat. Sapphire was also launched in 2001 on Kodiak Star, out of Kodiak, Alaska.

ANDE

The Atmospheric Neutral Density Experiment (ANDE) was another PCSat follow-on payload that flew inside a Navy Research Lab sphere launched to study the density of the atmosphere. ANDE had no solar panels, instead ANDE used 112 "D" sized Lithium cells. No external antennas were installed either. Each of the two halves of the sphere was insulated and used as a dipole antenna (http://aprs.org/ande.html).

RAFT/MARScom

RAFT/MARScom was a USNA's 6th built satellite and was a combination of two small 5 inch cube shaped satellites. The Radar Fence Transponder (RAFT) was cube one and used to explore the Navy's Space Surveillance System. The second cube dubbed MarsCom contained a transponder which also continued to support follow-on PCSat transponder type communications and voice synthesizer (DoD Volunteer Emergency Communicators) (http://aprs.org/raft.html).

MIDSTAR

MIDSTAR was the largest USNA satellite and was composed of several minor payloads for the Space Test Program that operated in S-Band. The satellite was only capable of communicating with the USNA Ground Station. MIDSTAR II was a follow-up to the first; however, it never flew.

MIDSTAR-1 after vibration testing. MidSTAR.jpg
MIDSTAR-1 after vibration testing.

DRAGONSat

DRAGONSat integrated into flight payload. USNA Midshipmen who built the satellite are behind the payload. DRAGONSat Flight integration.jpg
DRAGONSat integrated into flight payload. USNA Midshipmen who built the satellite are behind the payload.

DRAGONSat was the first 1U Cubesat built by midshipmen. The primary payload was a gravity-gradient boom that extended a tip mass 1.5 meters from the satellite.

DRAGONSat before payload integration. The opening for the extending boom can be seen on the left side of the satellite. DRAGONSat.jpg
DRAGONSat before payload integration. The opening for the extending boom can be seen on the left side of the satellite.

USS Langley

USS Langley after vibe table testing with fully deployed solar panels. Langley USNA.jpg
USS Langley after vibe table testing with fully deployed solar panels.

This 3U Colony-1 Cubesat was designed to provide a Linux-based file server in space operating on S-Band. It launched on the ULTRA mission in spring 2015. Communications were never established with the satellite.

BRICSat

BRICSat-1

BRICSat-1 before flight integration. BRICSat-1.jpg
BRICSat-1 before flight integration.

BRICSat-1 is a 1.5 U Cubesat with a primary payload of micro-arch thrusters built by George Washington University to experiment with attitude control. It was launched on the ULTRA mission in the spring of 2015 and is still active. BRICSat-1 also continues support of the Amateur radio operators via a PSK-31 multi-user text messaging transponder similar to PSAT, an updated version of PCSAT. The thruster experiment was a success; however, communication issues prevent the retrieval of the data from the satellite. See http://aprs.org/bricsat-1.html

BRICSat-2

BRICSat-2 after initial assembly. Thruster openings can be seen as little holes on the front of the satellite. BRICSat-2.jpg
BRICSat-2 after initial assembly. Thruster openings can be seen as little holes on the front of the satellite.
BRICSat-2 assembly. L to R Midshipmen Eilinger, Furseth, and Cumberland. BRICSat-2 Assembly.jpg
BRICSat-2 assembly. L to R Midshipmen Eilinger, Furseth, and Cumberland.

Manifest on the STP-2 launch of SpaceX heavy lift vehicle in September 2017, this 1.5U CubeSat continues flight testing of the George Washington University thrusters. BRICSat-2 will conduct similar tests as BRICSat-1 but with the redesigned radio also being flown on PSAT-2. See http://aprs.org/bricsat-2.html

PSAT

PSAT-1

PSAT or ParkinsonSat is the upgraded version of PCSat and operates using the APRS network. PSAT also houses a PSK-31 transponder. Launched with BRICSat and USS Langley on 20 May 2015, PSAT-1 has had non mission critical failures, and continues to operate today. See http://aprs.org/psat.html

PSAT-2

Manifest on the STP-2 launch of SpaceX heavy lift vehicle in September 2017, this communications satellite has integrated all of the APRS command and control as well as APRS user transponder onto a single circuit card as the baseline of future USNA CubeSat missions. It combines all of the APRS data relay netweok pioneered by USNA since PCSat in 2001 and includes the PSK-31 and TouchTone Texting experiments of QIKCOM-2 all into a single satellite. See http://aprs.org/psat-2.html

QIKCOM

QIKCOM-1

QIKCom-1 is an amateur radio payload built to take advantage of the previously developed APRS network. Because it flies on a host spacecraft (SIMPL), there were no solar panels or attitude control systems developed (as in previous designs). It continues the PCSat and PSAT missions containing APRS packet radio communications transponders for relaying remote telemetry, sensor and user data from remote users and amateur radio environmental experiments. The data transponder also includes all the telemetry and command and control for a complete CubeSat.

QUICOM-1 has arrived on the ISS and is awaiting deployment. Currently SIMPL / QIKCOM-1 is being held from release due to a SNAFU over radio licensing. Once released, the expected lifetime is very short, lasting for only a couple weeks. See http://aprs.org/qikcom-1.html

QIKCOM-2

QIKCOM-2 is another USNA built payload flying on the eXCITe mission scheduled for launch in late 2016. The payload continues the APRS missions of prior USNA space systems, but also adds a simpler touch-tone up-link capability so that users worldwide can use existing radios with key pads instead of the more expensive specialized APRS radios from past satellites. QIKCOM-2 allows position reporting and text messaging from anywhere on earth using simple $90 radios. Delivered in November 2015 to the spacecraft integrator, QIKCOM-2 is being held as a hot-backup and will be launched at the earliest opportunity. See http://aprs.org/qikcom-2.html

HFSat

HFSat is designed to be a HF SATCOM (High Frequency Satellite Communications) experiment to demonstrate the use of HF radios for simple backup HF SATCOM. The concept would allows every unit from the largest Naval warships to a single Marine infantryman to be equipped with HF radios to access SATCOM without needing special radios. The detailed designed began late summer of 2016 and initial tests will use HF Satellite allocations in the Amateur Satellite services as well as amateur experiments worldwide.

NSAT

NSAT is a planned 1.5U CubeSat designed to house two experiments and will be the first USNA Satellite to use DoD Command and Control system licensed via NTIA. The first of the payloads will test the use of simplified encryption techniques in the space environment. The second experiment will fly an experimental distributed power system for NASA.

TUGSat

TUGSat is a planned 3U CubeSat with electric propulsion (similar to BRICSat) specifically designed for attitude control and maneuvering capability. It will be designed to work with follow on RSAT modules with docking capabilities.

RSat-P

RSat-P, or Repair Satellite Prototype, is a 3U CubeSat and the first USNA robotics mission that launched on 16 December 2018. RSat-P features two robotic arms for robotic investigations and manipulations in the space environment. Future RSat models will be attached to a TUGSAT which will provide the needed maneuvering capabilities.

Related Research Articles

AMSAT is a name for amateur radio satellite organizations worldwide, but in particular the Radio Amateur Satellite Corporation (AMSAT) with headquarters at Washington, D.C. AMSAT organizations design, build, arrange launches for, and then operate (command) satellites carrying amateur radio payloads, including the OSCAR series of satellites. Other informally affiliated national organizations exist, such as AMSAT Germany (AMSAT-DL) and AMSAT Japan (JAMSAT).

<span class="mw-page-title-main">Rincon 1</span>

Rincon 1 was a CubeSat built by the Student Satellite Program of the University of Arizona. The primary payload was furnished by Rincon Research, hence the name. Rincon 1 was the product of the work of about 50 students, ranging from college freshmen to Ph.D. students, over the course of several years. It was launched, after being postponed several times, on board a Dnepr on July 26, 2006, but the rocket failed and the satellite was destroyed.

The Space Test Program (STP) is the primary provider of spaceflight for the United States Department of Defense (DoD) space science and technology community. STP is managed by a group within the Advanced Systems and Development Directorate, a directorate of the Space and Missile Systems Center of the United States Space Force. STP provides spaceflight via the International Space Station (ISS), piggybacks, secondary payloads and dedicated launch services.

AeroCube-3 is a single-unit CubeSat which was built and is being operated by The Aerospace Corporation, at El Segundo, California. It is the third AeroCube picosatellite, following on from AeroCube-1, which was lost in a launch failure in 2006, and AeroCube-2 which was successfully launched in 2007 but failed immediately after launch. Compared to its predecessors it contains several improvements in its infrastructure, including a redesigned power system, replacing the older system which was responsible for the loss of AeroCube-2. Its development was funded by the United States Air Force Space and Missile Systems Center, at Los Angeles Air Force Base.

HawkSat-1 was a single-unit CubeSat which was built and is being operated by the Hawk Institute for Space Sciences (HISS), Pocomoke City, Maryland. It is based on a Pumpkin Inc. CubeSat kit, and carries a technology demonstration payload, primarily as a proof of concept mission, testing command, data and power subsystems, as well as solar panels and communications.

SSETI Express was the first spacecraft to be designed and built by European students and was launched by the European Space Agency. SSETI Express is a small spacecraft, similar in size and shape to a washing machine. On board the student-built spacecraft were three CubeSat picosatellites, extremely small satellites weighing around one kg each. These were deployed one hour and forty minutes after launch. Twenty-one university groups, working from locations spread across Europe and with very different cultural backgrounds, worked together via the internet to jointly create the satellite. The expected lifetime of the mission was planned to be 2 months. SSETI Express encountered an unusually fast mission development: less than 18 months from kick-off in January 2004 to flight-readiness.

Technology Education Satellite (TechEdSat) is a successful nano-sat flight series conducted from the NASA Ames Research Center in collaboration with numerous universities. While one of the principal aims has been to introduce young professionals and university students to the practical realm of developing space flight hardware, considerable innovations have been introduced. In addition, this evolving flight platform has tested concepts for Low Earth Orbit (LEO) sample return, as well as planetary nano-sat class mission concepts.

TurkSat-3USat is a Turkish communications nanosatellite developed by the Space Systems Design and Test Laboratory and Radio Frequency Electronics Laboratory of Istanbul Technical University (ITU) in collaboration with the Türksat company along with Turkish Amateur Satellite Technology Organization (TAMSAT). It was launched on 26 April 2013.

Space Tethered Autonomous Robotic Satellite II or STARS-II, was a nanosatellite built by Japan's Kagawa University to test an electrodynamic tether in low Earth orbit, a follow-on to the STARS mission.

ExoCube (CP-10) is a space weather satellite developed by the California Polytechnic State University – San Luis Obispo and sponsored by the National Science Foundation. It is one of many miniaturized satellites that adhere to the CubeSat standard. ExoCube's primary mission is to measure the density of hydrogen, oxygen, helium, and nitrogen in the Earth's exosphere. It is characterizing [O], [H], [He], [N2], [O+], [H+], [He+], [NO+], as well as the total ion density above ground stations, incoherent scatter radar (ISR) stations, and periodically throughout the entire orbit. It was launched aboard a Delta II rocket with the NASA SMAP primary payload from Vandenberg AFB in California on January 31, 2015.

<span class="mw-page-title-main">Centre Spatial Universitaire Montpellier-Nîmes</span>

The Centre Spatial Universitaire (CSU) Montpellier-Nîmes is a division of the University of Montpellier. Its purpose is to educate students in space sciences through the design, production and testing of nanosatellites. The CSU was created to consolidate nanosatellite activities that were initiated in 2006 by the RADIAC team of the Institut d'Electronique et des Systèmes, a research institute also affiliated with the university.

<i>ArgoMoon</i> Nanosatellite

ArgoMoon is a CubeSat that was launched into a heliocentric orbit on Artemis 1, the maiden flight of the Space Launch System, on 16 November 2022 at 06:47:44 UTC. The objective of the ArgoMoon spacecraft is to take detailed images of the Interim Cryogenic Propulsion Stage following Orion separation, an operation that will demonstrate the ability of a cubesat to conduct precise proximity maneuvers in deep space.

UBAKUSAT was a Turkish nanosatellite that was developed by Istanbul Technical University. It was launched into space on board a Falcon-9 rocket in April 2018 and was deployed into its orbit from the International Space Station in May 2018. It was built as a technology demonstration and earth observation satellite to provide voice communications for amateur radio stations around the world. It carried an experimental card, TAMSAT Simplesat, which allowed scientists to test its accuracy of measuring radiation from space. It was the fifth satellite to be built by students of Istanbul Technical University.

ParkinsonSAT, PSat or Naval Academy OSCAR 84 is a U.S. technology demonstration satellite and an amateur radio satellite for Packet Radio. It was built at the U.S. Naval Academy and was planned as a double satellite. The name ParkinsonSAT was chosen in honor of Bradford Parkinson, the father of the GPS system. After successful launch, the satellite was assigned the OSCAR number 84.

BRICSat-P or OSCAR 83 (NO-83) previously known as PSat-B, is a U.S. technology demonstration satellite and an amateur radio satellite for Packet Radio. BRICSat-P is a low cost 1.5U CubeSat built by the U.S. Naval Academy Satellite Lab in collaboration with George Washington University, that will demonstrate on-orbit operation of a Micro-Cathode Arc Thruster (µCAT) electric propulsion system and carries an amateur communication payload.

<span class="mw-page-title-main">BRICSat-2</span> Experimental amateur radio satellite

BRICSat-2, or USNAP1, was an experimental amateur radio satellite from the United States Naval Academy that was developed in collaboration with George Washington University. BRICSat-2 was the successor to BRICSat-P. AMSAT North America's OSCAR number administrator assigned number 103 to this satellite; in the amateur radio community it was therefore called Navy-OSCAR 103, short NO-103.

PSAT-2 is an experimental amateur radio satellite from the U.S. Naval Academy, which was developed in collaboration with the Technical University of Brno in Brno, Czech Republic. AMSAT North America's OSCAR number administrator assigned number 104 to this satellite; in the amateur radio community it is therefore also called Navy-OSCAR 104, short NO-104.

<span class="mw-page-title-main">SpaceX CRS-27</span> 2023 American resupply spaceflight to the ISS

SpaceX CRS-27, also known as SpX-27, was a Commercial Resupply Service mission to the International Space Station (ISS) launched on 15 March 2023. The mission was contracted by NASA and was flown by SpaceX using Cargo Dragon C209. This was the seventh flight for SpaceX under NASA's CRS Phase 2.

<span class="mw-page-title-main">SSLV-D1</span>

The SSLV-D1 was the first mission of the Small Satellite Launch Vehicle (SSLV). Due to a sensor fault during separation of second stage and subsequent initiation of Open Loop Guidance by onboard computer to salvage the mission, the upper stage did not fire for planned duration and payloads were ultimately injected into a decaying orbit not achieving the objectives of mission.

References

  1. "MidSTAR-2". Archived from the original on 2006-07-26. Retrieved 2006-04-10.
  2. http://intranet.usna.edu/AeroDept/admin/facilities.html%5B%5D
  3. PCSAT2 Archived 2007-05-03 at the Wayback Machine