Solar telescope

Last updated
The Swedish 1-m Solar Telescope at Roque de los Muchachos Observatory, La Palma in the Canary Islands. Swedish Solar Telescope.jpg
The Swedish 1-m Solar Telescope at Roque de los Muchachos Observatory, La Palma in the Canary Islands.

A solar telescope or a solar observatory is a special-purpose telescope used to observe the Sun. Solar telescopes usually detect light with wavelengths in, or not far outside, the visible spectrum. Obsolete names for Sun telescopes include heliograph and photoheliograph.

Contents

Professional solar telescopes

McMath-Pierce solar telescope observing room Mc Math-Pierce Solar Telescope Observing Room (McMathSolar-Telescope-Observing-Room-II-CC).jpg
McMath–Pierce solar telescope observing room

Solar telescopes need optics large enough to achieve the best possible diffraction limit but less so for the associated light-collecting power of other astronomical telescopes. However, recently newer narrower filters and higher framerates have also driven solar telescopes towards photon-starved operations. [1] Both the Daniel K. Inouye Solar Telescope as well as the proposed European Solar Telescope (EST) have larger apertures not only to increase the resolution, but also to increase the light-collecting power.

Because solar telescopes operate during the day, seeing is generally worse than for night-time telescopes, because the ground around the telescope is heated, which causes turbulence and degrades the resolution. To alleviate this, solar telescopes are usually built on towers and the structures are painted white. The Dutch Open Telescope is built on an open framework to allow the wind to pass through the complete structure and provide cooling around the telescope's main mirror.

Another solar telescope-specific problem is the heat generated by the tightly-focused sunlight. For this reason, a heat stop is an integral part of the design of solar telescopes. For the Daniel K. Inouye Solar Telescope, the heat load is 2.5 MW/m2, with peak powers of 11.4 kW. [2] The goal of such a heat stop is not only to survive this heat load, but also to remain cool enough not to induce any additional turbulence inside the telescope's dome.

Professional solar observatories may have main optical elements with very long focal lengths (although not always, Dutch Open Telescope) and light paths operating in a vacuum or helium to eliminate air motion due to convection inside the telescope. However, this is not possible for apertures over 1 meter, at which the pressure difference at the entrance window of the vacuum tube becomes too large. Therefore, the Daniel K. Inouye Solar Telescope and the EST have active cooling of the dome to minimize the temperature difference between the air inside and outside the telescope.

Due to the sun's narrow path across the sky, some solar telescopes are fixed in position (and are sometimes buried underground), with the only moving part being a heliostat to track the Sun. One example of this is the McMath-Pierce Solar Telescope.

The Sun, being the closest star to earth, allows a unique chance to study stellar physics with high-resolution. It was, until the 1990s, [3] the only star whose surface had been resolved. General topics that interest a solar astronomer are its 11-year periodicity (i.e., the Solar Cycle), sunspots, magnetic field activity (see solar dynamo), solar flares, coronal mass ejections, differential rotation, and plasma physics.

Other types of observation

Most solar observatories observe optically at visible, UV, and near infrared wavelengths, but other solar phenomena can be observed — albeit not from the Earth's surface due to the absorption of the atmosphere:

Amateur solar telescopes

Public event organized to observe the sun with solar telescope and solar glasses Solar Outreach Events in Schools Kosovo-wide.jpg
Public event organized to observe the sun with solar telescope and solar glasses
Diagram of a Herschel Wedge and other solar viewing methods. SolarEyepieces.png
Diagram of a Herschel Wedge and other solar viewing methods.

In the field of amateur astronomy there are many methods used to observe the Sun. Amateurs use everything from simple systems to project the Sun on a piece of white paper, light blocking filters, Herschel wedges which redirect 95% of the light and heat away from the eyepiece, [4] up to hydrogen-alpha filter systems and even home built spectrohelioscopes. In contrast to professional telescopes, amateur solar telescopes are usually much smaller.[ citation needed ]

With a conventional telescope, an extremely dark filter at the opening of the primary tube is used to reduce the light of the sun to tolerable levels. Since the full available spectrum is observed, this is known as "white-light" viewing, and the opening filter is called a "white-light filter". The problem is that even reduced, the full spectrum of white light tends to obscure many of the specific features associated with solar activity, such as prominences and details of the chromosphere (i.e., the surface). Specialized solar telescopes facilitate clear observation of such H-alpha emissions by using a bandwidth filter implemented with a Fabry-Perot etalon. [5]

Solar tower

A solar tower is a structure used to support equipment for studying the Sun, and is typically part of solar telescope designs. Solar tower observatories are also called vacuum tower telescopes. Solar towers are used to raise the observation equipment above atmospheric turbulence caused by solar heating of the ground and the radiation of the heat into the atmosphere. Traditional observatories do not have to be placed high above ground level, as they do most of their observation at night, when ground radiation is at a minimum.

The horizontal Snow solar observatory was built on Mount Wilson in 1904. It was soon found that heat radiation was disrupting observations. Almost as soon as the Snow Observatory opened, plans were started for a 60-foot-tall (18 m) tower that opened in 1908 followed by a 150-foot (46 m) tower in 1912. The 60-foot (18 m) tower is currently used to study helioseismology, while the 150-foot (46 m) tower is active in UCLA's Solar Cycle Program.

The term has also been used to refer to other structures used for experimental purposes, such as the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE), which is being used to study Cherenkov radiation, and the Weizmann Institute solar power tower.

Other solar telescopes that have solar towers are Richard B. Dunn Solar Telescope, Solar Observatory Tower Meudon and others.

Selected solar telescopes

Daocheng Solar Radio Telescope in China DSRT2.jpg
Daocheng Solar Radio Telescope in China

See also

Related Research Articles

<span class="mw-page-title-main">Space telescope</span> Instrument in space to study astronomical objects

A space telescope is a telescope in outer space used to observe astronomical objects. Suggested by Lyman Spitzer in 1946, the first operational telescopes were the American Orbiting Astronomical Observatory, OAO-2 launched in 1968, and the Soviet Orion 1 ultraviolet telescope aboard space station Salyut 1 in 1971. Space telescopes avoid several problems caused by the atmosphere, including the absorption or scattering of certain wavelengths of light, obstruction by clouds, and distortions due to atmospheric refraction such as twinkling. Space telescopes can also observe dim objects during the daytime, and they avoid light pollution which ground-based observatories encounter. They are divided into two types: Satellites which map the entire sky, and satellites which focus on selected astronomical objects or parts of the sky and beyond. Space telescopes are distinct from Earth imaging satellites, which point toward Earth for satellite imaging, applied for weather analysis, espionage, and other types of information gathering.

<span class="mw-page-title-main">Radio telescope</span> Directional radio antenna used in radio astronomy

A radio telescope is a specialized antenna and radio receiver used to detect radio waves from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency portion of the electromagnetic spectrum emitted by astronomical objects, just as optical telescopes are the main observing instrument used in traditional optical astronomy which studies the light wave portion of the spectrum coming from astronomical objects. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night.

<span class="mw-page-title-main">Radio astronomy</span> Subfield of astronomy that studies celestial objects at radio frequencies

Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The first detection of radio waves from an astronomical object was in 1933, when Karl Jansky at Bell Telephone Laboratories reported radiation coming from the Milky Way. Subsequent observations have identified a number of different sources of radio emission. These include stars and galaxies, as well as entirely new classes of objects, such as radio galaxies, quasars, pulsars, and masers. The discovery of the cosmic microwave background radiation, regarded as evidence for the Big Bang theory, was made through radio astronomy.

<span class="mw-page-title-main">Mount Wilson Observatory</span> Astronomical observatory in Los Angeles County, California, USA

The Mount Wilson Observatory (MWO) is an astronomical observatory in Los Angeles County, California, United States. The MWO is located on Mount Wilson, a 5,710-foot (1,740-meter) peak in the San Gabriel Mountains near Pasadena, northeast of Los Angeles.

<span class="mw-page-title-main">Astronomical seeing</span> Atmospheric distortions of light

In astronomy, seeing is the degradation of the image of an astronomical object due to turbulence in the atmosphere of Earth that may become visible as blurring, twinkling or variable distortion. The origin of this effect is rapidly changing variations of the optical refractive index along the light path from the object to the detector. Seeing is a major limitation to the angular resolution in astronomical observations with telescopes that would otherwise be limited through diffraction by the size of the telescope aperture. Today, many large scientific ground-based optical telescopes include adaptive optics to overcome seeing.

<span class="mw-page-title-main">Observational astronomy</span> Division of astronomy

Observational astronomy is a division of astronomy that is concerned with recording data about the observable universe, in contrast with theoretical astronomy, which is mainly concerned with calculating the measurable implications of physical models. It is the practice and study of observing celestial objects with the use of telescopes and other astronomical instruments.

<span class="mw-page-title-main">Great Observatories program</span> Series of NASA satellites

NASA's series of Great Observatories satellites are four large, powerful space-based astronomical telescopes launched between 1990 and 2003. They were built with different technology to examine specific wavelength/energy regions of the electromagnetic spectrum: gamma rays, X-rays, visible and ultraviolet light, and infrared light.

<span class="mw-page-title-main">McMath–Pierce solar telescope</span> Telescope in Pima County, Arizona

McMath–Pierce solar telescope is a 1.6 m f/54 reflecting solar telescope at Kitt Peak National Observatory in Arizona, United States. Built in 1962, the building was designed by American architect Myron Goldsmith and Bangladeshi-American structural engineer Fazlur Rahman Khan. It was the largest solar telescope and the largest unobstructed aperture optical telescope in the world. It is named after the astronomers Robert Raynolds McMath and Keith Pierce.

<span class="mw-page-title-main">International Ultraviolet Explorer</span> Astronomical observatory satellite

International Ultraviolet Explorer, was the first space observatory primarily designed to take ultraviolet (UV) electromagnetic spectrum. The satellite was a collaborative project between NASA, the United Kingdom's Science and Engineering Research Council and the European Space Agency (ESA), formerly European Space Research Organisation (ESRO). The mission was first proposed in early 1964, by a group of scientists in the United Kingdom, and was launched on 26 January 1978 aboard a NASA Thor-Delta 2914 launch vehicle. The mission lifetime was initially set for 3 years, but in the end it lasted 18 years, with the satellite being shut down in 1996. The switch-off occurred for financial reasons, while the telescope was still functioning at near original efficiency.

<span class="mw-page-title-main">Kodaikanal Solar Observatory</span> Observatory

The Kodaikanal Solar Observatory is a solar observatory owned and operated by the Indian Institute of Astrophysics. It is on the southern tip of the Palani Hills 4 kilometres (2.5 mi) from Kodaikanal.

<span class="mw-page-title-main">Richard B. Dunn Solar Telescope</span> Optical telescope dedicated to observing the Sun

The Dunn Solar Telescope also known as the Richard B. Dunn Solar Telescope is a unique vertical-axis solar telescope, in Sunspot, New Mexico located at Sacramento Peak, New Mexico. It is the main telescope at the Sunspot Solar Observatory, operated by New Mexico State University in partnership with the National Solar Observatory through funding by the National Science Foundation, the state of New Mexico and private funds from other partners. The Dunn Solar Telescope specializes in high-resolution imaging and spectroscopy to help astrophysicists worldwide obtain a better understanding of how the Sun affects the Earth. Completed in 1969, it was upgraded with high-order adaptive optics in 2004 and remains a highly versatile astrophysical observatory that serves as an important test platform for developing new instrumentation and technologies. The Dunn Solar Telescope, located in Sunspot, New Mexico, is a vertical-axis solar telescope that specializes in high-resolution imaging and spectroscopy. It was completed in 1969 and received a significant upgrade with high-order adaptive optics in 2004.

<span class="mw-page-title-main">Big Bear Solar Observatory</span> University-based astronomical facility

Big Bear Solar Observatory (BBSO) is a university-based solar observatory in the United States. It is operated by New Jersey Institute of Technology (NJIT). BBSO has a 1.6-meter (5.2 ft) clear-aperture Goode Solar Telescope (GST), which has no obscuration in the optical train. BBSO is located on the north side of Big Bear Lake in the San Bernardino Mountains of southwestern San Bernardino County, California, approximately 120 kilometers (75 mi) east of downtown Los Angeles. The telescopes and instruments at the observatory are designed and employed specifically for studying the activities and phenomena of the Sun.

<span class="mw-page-title-main">Astronomical interferometer</span> Array used for astronomical observations

An astronomical interferometer or telescope array is a set of separate telescopes, mirror segments, or radio telescope antennas that work together as a single telescope to provide higher resolution images of astronomical objects such as stars, nebulas and galaxies by means of interferometry. The advantage of this technique is that it can theoretically produce images with the angular resolution of a huge telescope with an aperture equal to the separation, called baseline, between the component telescopes. The main drawback is that it does not collect as much light as the complete instrument's mirror. Thus it is mainly useful for fine resolution of more luminous astronomical objects, such as close binary stars. Another drawback is that the maximum angular size of a detectable emission source is limited by the minimum gap between detectors in the collector array.

<span class="mw-page-title-main">Daniel K. Inouye Solar Telescope</span> Scientific facility at Haleakala Observatory in Hawaii, US

The Daniel K. Inouye Solar Telescope (DKIST) is a scientific facility for studies of the Sun at Haleakala Observatory on the Hawaiian island of Maui. Known as the Advanced Technology Solar Telescope (ATST) until 2013, it was named after Daniel K. Inouye, a US Senator for Hawaii. It is the world's largest solar telescope, with a 4-meter aperture. The DKIST is funded by National Science Foundation and managed by the National Solar Observatory. The total project cost is $344.13 million. It is a collaboration of numerous research institutions. Some test images were released in January 2020. The end of construction and transition into scientific observations was announced in November 2021.

<span class="mw-page-title-main">Extreme Ultraviolet Explorer</span> NASA satellite of the Explorer program

The Extreme Ultraviolet Explorer was a NASA space telescope for ultraviolet astronomy. EUVE was a part of NASA's Explorer spacecraft series. Launched on 7 June 1992. With instruments for ultraviolet (UV) radiation between wavelengths of 7 and 76 nm, the EUVE was the first satellite mission especially for the short-wave ultraviolet range. The satellite compiled an all-sky survey of 801 astronomical targets before being decommissioned on 31 January 2001.

<span class="mw-page-title-main">Astronomical filter</span> Telescope accessory used to improve details of viewed objects

An astronomical filter is a telescope accessory consisting of an optical filter used by amateur astronomers to simply improve the details and contrast of celestial objects, either for viewing or for photography. Research astronomers, on the other hand, use various band-pass filters for photometry on telescopes, in order to obtain measurements which reveal objects' astrophysical properties, such as stellar classification and placement of a celestial body on its Wien curve.

<span class="mw-page-title-main">Nançay Radio Observatory</span> Radio observatory in France

The Nançay Radio Observatory, opened in 1956, is part of Paris Observatory, and also associated with the University of Orléans. It is located in the department of Cher in the Sologne region of France. The station consists of several instruments. Most iconic of these is the large decimetric radio telescope, which is one of the largest radio telescopes in the world. Long established are also the radio heliograph, a T-shaped array, and the decametric array operating at wavelengths between 3 m and 30 m.

<span class="mw-page-title-main">Goode Solar Telescope</span> Scientific facility in Big Bear Lake, California, U.S.

The Goode Solar Telescope (GST) is a scientific facility for studies of the Sun named after Philip R. Goode. It was the solar telescope with the world's largest aperture in operation for more than a decade. Located in Big Bear Lake; California, the Goode Solar Telescope is the main telescope of the Big Bear Solar Observatory operated by the New Jersey Institute of Technology (NJIT). Initially named New Solar Telescope (NST), first engineering light was obtained in December 2008, and scientific observations of the Sun began in January 2009. On July 17, 2017, the NST was renamed in honor of Goode, a former, and founding director of NJIT's Center for Solar-Terrestrial Research and the principal investigator of the facility. Goode conceived, raised the funds, and assembled the team that built and commissioned the telescope, and it was the highest resolution solar telescope in the world (until the end of 2019) and the first facility class solar telescope built in the U.S. in a generation.

References

  1. Stenflo, J. O. (2001). G. Mathys; S. K. Solanki; D. T. Wickramasinghe (eds.). "Limitations and Opportunities for the Diagnostics of Solar and Stellar Magnetic Fields". ASP Conference Proceedings. Magnetic Fields Across the Hertzsprung-Russell Diagram. 248. San Francisco: Astronomical Society of the Pacific: 639. Bibcode:2001ASPC..248..639S.
  2. Dalrymple (1 April 2003). "Heat Stop Concepts" (PDF). ATST Technical Notes.
  3. Burns, D.; Baldwin, J. E.; Boysen, R. C.; Haniff, C. A.; et al. (September 1997). "The surface structure and limb-darkening profile of Betelgeuse". Monthly Notices of the Royal Astronomical Society . 290 (1): L11–L16. Bibcode:1997MNRAS.290L..11B. doi: 10.1093/mnras/290.1.l11 .
  4. Pierre Guillermier; Serge Koutchmy (1999). Total Eclipses: Science, Observations, Myths and Legends . Springer Science & Business Media. p.  37. ISBN   978-1-85233-160-3.
  5. Morison, Ian (2016-12-25). H-alpha Solar Telescopes - An In-depth Discussion and Survey. Professor Morison's Astronomy Digest, 25 December 2016. Retrieved on 2020-04-17 from http://www.ianmorison.com/h-alpha-solar-telescopes-an-in-depth-discussion-and-survey/.