Suomi NPP

Last updated

Suomi NPP
Suomi NPP satellite.jpg
Suomi NPP satellite
NamesSuomi National Polar-orbiting Partnership
NPOESS Preparatory Project (NPP)
Mission type Weather
Operator NASA  / NOAA  / DoD
COSPAR ID 2011-061A OOjs UI icon edit-ltr-progressive.svg
SATCAT no. 37849
Website
Mission duration5 years (planned)
12 years, 5 months, 13 days (elapsed)
Spacecraft properties
Bus BCP-2000
Manufacturer Ball Aerospace & Technologies
Launch mass2,128 kg (4,691 lb) [1]
Dry mass1,400 kg (3,100 lb)
Payload mass464 kg (1,023 lb)
Dimensions1.3 m x 1.3 m x 4.2 m
Power2000 watts
Start of mission
Launch date28 October 2011,
09:48:01.828 UTC [2]
Rocket Delta II 7920-10C
(Delta D357)
Launch site Vandenberg, SLC-2W
Contractor United Launch Alliance
Orbital parameters
Reference system Geocentric orbit [3]
Regime Sun-synchronous orbit
Perigee altitude 833.7 km (518.0 mi)
Apogee altitude 834.3 km (518.4 mi)
Inclination 98.79°
Period 101.44 minutes
NPOESS Preparatory Project logo.svg
Insignia for the NPOESS Preparatory Project
  NOAA-19
NOAA-20  
 

The Suomi National Polar-orbiting Partnership (Suomi NPP), previously known as the National Polar-orbiting Operational Environmental Satellite System Preparatory Project (NPP) and NPP-Bridge, is a weather satellite operated by the United States National Oceanic and Atmospheric Administration (NOAA). It was launched in 2011 and is currently in operation.

Contents

Suomi NPP was originally intended as a pathfinder for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) program, which was to have replaced NOAA's Polar Operational Environmental Satellites (POES) and the U.S. Air Force's Defense Meteorological Satellite Program (DMSP). Suomi NPP was launched in 2011 after the cancellation of NPOESS to serve as a stop-gap between the POES satellites and the Joint Polar Satellite System (JPSS) which will replace them. Its instruments provide climate measurements that continue prior observations by NASA's Earth Observing System (EOS).

Name

The satellite is named after Verner E. Suomi, a Finnish-American meteorologist at the University of Wisconsin–Madison. The name was announced on 24 January 2012, three months after the satellite's launch. [4] [5]

The satellite was launched from Space Launch Complex-2W (SLC-2W) at Vandenberg Space Force Base in California by a United Launch Alliance Delta II 7920-10C on 28 October 2011. The satellite was placed into a Sun-synchronous orbit (SSO) 833 km (518 mi) above the Earth. [6]

History

NPOESS Preparatory Project (NPP) is intended to bridge the gap between old Earth Observing System (EOS) and new systems (JPSS) by flying new instruments, on a new satellite bus, using a new ground data network. [7] Originally planned for launch five years earlier as a joint NASA/NOAA/DoD project, NPP was to be a pathfinder mission for the larger National Polar-orbiting Operational Environmental Satellite System (NPOESS) until DoD participation in the larger project was dissolved. The project continued as a civilian weather forecasting replacement for the NOAA Polar Operational Environmental Satellites (POES) series, and ensured continuity of climate measurements begun by the Earth Observing System (EOS) of NASA. [8]

Launch

The spacecraft was launched on 28 October 2011 at from Vandenberg Space Force Base via a Delta II in the 7920-10 configuration (Extra Extended Long Tank with RS-27A engine first stage, 9 GEM-40 solid rocket motors, type 2 second stage with Aerojet AJ10 engine, no third stage and a 10-foot fairing). [9] [10] Additionally, the rocket deployed five CubeSats as a part of NASA ELaNa III manifest.

Spacecraft

Suomi NPP in the cleanroom before launch NPP satellite in cleanroom.jpg
Suomi NPP in the cleanroom before launch

The Suomi NPP spacecraft has been built and integrated by BATC (Ball Aerospace and Technologies Corporation) of Boulder, Colorado (NASA/GSFC contract award in May 2002). The platform design is a variation of BCP 2000 (Ball Commercial Platform) bus of BATC of ICESat and CloudSat heritage. The spacecraft consists of an aluminum honeycomb structure.

The ADCS (Attitude Determination and Control Subsystem) provides 3-axis stabilization using 4 reaction wheels for fine attitude control, 3 torquer bars for momentum unloading, thrusters for coarse attitude control (such as during large-angle slews for orbital maintenance), 2 star trackers for fine attitude determination, 3 gyroscopes for attitude and attitude rate determination between star tracker updates, 2 Earth sensors for safe-mode attitude control, and coarse Sun sensors for initial attitude acquisition, all monitored and controlled by the spacecraft controls a computer. ADCS provides real-time attitude knowledge of 10 arcsec (1 sigma) at the spacecraft navigation reference base, real-time spacecraft position knowledge of 25 m (1 sigma), and attitude control of 36 arcsec (1 sigma).

The EPS (Electrical Power Subsystem) uses Gallium arsenide (GaAs) solar cells to generate an average power of about 2 kW (EOL). The solar array rotates once per orbit to maintain a nominally normal orientation to the Sun. In addition, a single-wing solar array is mounted on the anti-solar side of the spacecraft; its function is to preclude thermal input into the sensitive cryo radiators of the Visible Infrared Imaging Radiometer Suite (VIIRS) and Cross-track Infrared Sounder (CrIS) instruments. A regulated 28 ±6 VDC power bus distributes energy to all spacecraft subsystems and instruments. A nickel–hydrogen battery (NiH) system provides power for eclipse phase operations.

The spacecraft has an on-orbit design lifetime of 5 years (available consumables for 7 years). The spacecraft dry mass is about 1400 kg. NPP is designed to support controlled reentry at the end of its mission life (via propulsive maneuvers to lower the orbit perigee to approximately 50 km and target any surviving debris for open ocean entry). NPP is expected to have sufficient debris that survives reentry so as to require controlled reentry to place the debris in a pre-determined location in the ocean.

Instruments

The Suomi NPP is the first in a new generation of satellites intended to replace the Earth Observing System (EOS) satellites, which were launched from 1997 to 2009. The satellite orbits the Earth about 14 times each day. Its five imaging systems include:

Visible Infrared Imaging Radiometer Suite (VIIRS)

The Visible Infrared Imaging Radiometer Suite (VIIRS) is the largest instrument aboard of Suomi-NPP (National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project). It collects radiometric imagery in visible and infrared wavelengths of the land, atmosphere, ice, and ocean. It will survey broad swaths of the land, oceans, and air, enabling scientists to monitor everything from phytoplankton and other organisms in the sea, vegetation and forest cover, and the amount of sea ice at the poles. Data from VIIRS, collected from 22 channels across the electromagnetic spectrum, will also be used to observe active fires, ocean color, sea surface temperature, and other surface features. [11]

Ozone Mapping and Profiler Suite (OMPS)

The Ozone Mapping and Profiler Suite (OMPS) measures the ozone layer in our upper atmosphere tracking the status of global ozone distributions, including the ozone hole. It also monitors ozone levels in the troposphere. OMPS extends out 40-year long record ozone layer measurements while also providing improved vertical resolution compared to previous operational instruments. Closer to the ground, OMPS's measurements of harmful ozone improve air quality monitoring and when combined with cloud predictions; help to create the Ultraviolet index. OMPS has two sensors, both new designs, composed of three advanced hyperspectral-imaging spectrometers. [12]

Clouds and the Earth's Radiant Energy System (CERES)

The Clouds and the Earth's Radiant Energy System (CERES) will be used to study the Earth's radiation budget. Monitoring the amount of energy emitted and reflected by the planet, it measures both solar energy reflected by the Earth and heat emitted by our planet. This solar and thermal energy are key parts of the Earth's radiation budget. CERES instrument continues a multi-year record of the amount of energy entering and exiting from the top of the atmosphere of Earth. It will provide scientists with needed long-term, stable data sets to make accurate projections of global climate change. [13]

Cross-track Infrared Sounder (CrIS)

The Cross-track Infrared Sounder (CrIS) has 1305 spectral channels and will produce high-resolution, three-dimensional temperature, pressure, and moisture profiles. It measures continuous channels in the infrared region and has the ability to measure temperature profiles with improved accuracy over its predecessors. These profiles will be used to enhance weather forecasting models and will facilitate both short- and long-term weather forecasting. Over longer timescales, they will help improve understanding of climate phenomena. [14]

Advanced Technology Microwave Sounder (ATMS)

The Advanced Technology Microwave Sounder (ATMS), works in conjunction with the Cross-track Infrared Sounder (CrIS) to make detailed vertical profiles of atmospheric pressure, heat, and moisture. ATMS, a cross-track scanner with 22 channels, provides sounding observations needed to retrieve profiles of atmospheric temperature and moisture for civilian operational weather forecasting as well as continuity of these measurements for climate monitoring purposes. CrIS will operate at infrared wavelengths, while ATMS will operate at much shorter, microwave, wavelengths. [15]

Mission

Blue Marble 2012, created from Suomi NPP composite imagery Earth western hemisphere from Suomi NPP.jpg
Blue Marble 2012, created from Suomi NPP composite imagery

The VIIRS sensor on board the spacecraft acquired its first measurements of Earth on 21 November 2011. [16]

NASA also released a high resolution blue marble image of the Earth showing most of North America, which was created by NASA oceanographer Norman Kuring using data obtained on 4 January 2012 by the Visible Infrared Imager Radiometer Suite (VIIRS), one of five imaging systems aboard the satellite. That date was chosen because it was a fairly sunny day in most of North America. [6]

As of 22 November 2020, beyond the initial 5-year mission, the spacecraft continues to operate. [17]

Earth, created from Suomi NPP composite imagery.
Earth at night, created from Suomi NPP composite imagery.

Related Research Articles

High Energy Transient Explorer 1 (HETE-1) was a NASA astronomical satellite with international participation.

<span class="mw-page-title-main">Deep Space Climate Observatory</span> American solar research spacecraft

Deep Space Climate Observatory is a National Oceanic and Atmospheric Administration (NOAA) space weather, space climate, and Earth observation satellite. It was launched by SpaceX on a Falcon 9 v1.1 launch vehicle on 11 February 2015, from Cape Canaveral. This is NOAA's first operational deep space satellite and became its primary system of warning Earth in the event of solar magnetic storms.

<span class="mw-page-title-main">NPOESS</span>

The National Polar-orbiting Operational Environmental Satellite System (NPOESS) was to be the United States' next-generation satellite system that would monitor the Earth's weather, atmosphere, oceans, land, and near-space environment. NPOESS satellites were to host proven technologies and operational versions of sensors that were under operational-prototyping by NASA, at that time. The estimated launch date for the first NPOESS satellite, "C1" or "Charlie 1" was around 2013. Issues with sensor developments were the primary cited reason for delays and cost-overruns.

<span class="mw-page-title-main">Tropical Rainfall Measuring Mission</span> Joint space mission between NASA and JAXA

The Tropical Rainfall Measuring Mission (TRMM) was a joint space mission between NASA and JAXA designed to monitor and study tropical rainfall. The term refers to both the mission itself and the satellite that the mission used to collect data. TRMM was part of NASA's Mission to Planet Earth, a long-term, coordinated research effort to study the Earth as a global system. The satellite was launched on 27 November 1997 from the Tanegashima Space Center in Tanegashima, Japan. TRMM operated for 17 years, including several mission extensions, before being decommissioned on 15 April 2015. TRMM re-entered Earth's atmosphere on 16 June 2015.

<span class="mw-page-title-main">NOAA-19</span> Weather satellite

NOAA-19, known as NOAA-N' before launch, is the last of the American National Oceanic and Atmospheric Administration (NOAA) series of weather satellites. NOAA-19 was launched on 6 February 2009. NOAA-19 is in an afternoon Sun-synchronous orbit and is intended to replace NOAA-18 as the prime afternoon spacecraft.

<span class="mw-page-title-main">NOAA-17</span>

NOAA-17, also known as NOAA-M before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-17 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-L series and a new launch vehicle.

<span class="mw-page-title-main">NOAA-16</span>

NOAA-16, also known as NOAA-L before launch, was an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-16 continued the series of Advanced TIROS-N (ATN) spacecraft that began with the launch of NOAA-8 (NOAA-E) in 1983; but it had additional new and improved instrumentation over the NOAA A-K series and a new launch vehicle. It was launched on 21 September 2000 and, following an unknown anomaly, it was decommissioned on 9 June 2014. In November of 2015 it broke up in orbit, creating more than 200 pieces of debris.

<span class="mw-page-title-main">NOAA-18</span>

NOAA-18, also known as NOAA-N before launch, is an operational, polar orbiting, weather satellite series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-18 also continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983 but with additional new and improved instrumentation over the NOAA A-M series and a new launch vehicle. NOAA-18 is in an afternoon equator-crossing orbit and replaced NOAA-17 as the prime afternoon spacecraft.

<span class="mw-page-title-main">NOAA-15</span> Longest Operating Weather Satellite

NOAA-15, also known as NOAA-K before launch, is an operational, polar-orbiting of the NASA-provided Television Infrared Observation Satellite (TIROS) series of weather forecasting satellite operated by National Oceanic and Atmospheric Administration (NOAA). NOAA-15 was the latest in the Advanced TIROS-N (ATN) series. It provided support to environmental monitoring by complementing the NOAA/NESS Geostationary Operational Environmental Satellite program (GOES).

<span class="mw-page-title-main">Landsat 8</span> American Earth-observing satellite launched in 2013 as part of the Landsat program

Landsat 8 is an American Earth observation satellite launched on 11 February 2013. It is the eighth satellite in the Landsat program; the seventh to reach orbit successfully. Originally called the Landsat Data Continuity Mission (LDCM), it is a collaboration between NASA and the United States Geological Survey (USGS). NASA Goddard Space Flight Center in Greenbelt, Maryland, provided development, mission systems engineering, and acquisition of the launch vehicle while the USGS provided for development of the ground systems and will conduct on-going mission operations. It comprises the camera of the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS), which can be used to study Earth surface temperature and is used to study global warming.

The Polar-orbiting Operational Environmental Satellite (POES) is a constellation of polar orbiting weather satellites funded by the National Oceanic and Atmospheric Administration (NOAA) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) with the intent of improving the accuracy and detail of weather analysis and forecasting. The spacecraft were provided by NASA and the European Space Agency (ESA), and NASA's Goddard Space Flight Center oversaw the manufacture, integration and test of the NASA-provided TIROS satellites. The first polar-orbiting weather satellite launched as part of the POES constellation was the Television Infrared Observation Satellite-N (TIROS-N), which was launched on 13 October 1978. The final spacecraft, NOAA-19, was launched on 6 February 2009. The ESA-provided MetOp satellite operated by EUMETSAT utilize POES-heritage instruments for the purpose of data continuity. The Joint Polar Satellite System, which was launched on 18 November 2017, is the successor to the POES Program.

NOAA-13, also known as NOAA-I before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the operational, polar orbiting, meteorological satellite series operated by the National Environmental Satellite System (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-I continued the series (fifth) of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983. NOAA-I was in an afternoon equator-crossing orbit and was intended to replace the NOAA-11 (NOAA-H) as the prime afternoon (14:00) spacecraft.

Ozone Mapping and Profiler Suite (OMPS), is a suite of instruments built by Ball Aerospace that measure the global distribution of ozone and, less frequently, how it is distributed vertically within the stratosphere. The suite flies on the Suomi NPP and NOAA-20 (formerly JPSS-1) satellites along with several other instruments. It had been intended to also fly on the NPOESS, for which the NPP was a preparatory project, but the dissolution of that project was announced in 2010. OMPS launched on October 28, 2011.

<span class="mw-page-title-main">Joint Polar Satellite System</span> Constellation of American meteorology satellites

The Joint Polar Satellite System (JPSS) is the latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites. JPSS will provide the global environmental data used in numerical weather prediction models for forecasts, and scientific data used for climate monitoring. JPSS will aid in fulfilling the mission of the U.S. National Oceanic and Atmospheric Administration (NOAA), an agency of the Department of Commerce. Data and imagery obtained from the JPSS will increase timeliness and accuracy of public warnings and forecasts of climate and weather events, thus reducing the potential loss of human life and property and advancing the national economy. The JPSS is developed by the National Aeronautics and Space Administration (NASA) for the National Oceanic and Atmospheric Administration (NOAA), who is responsible for operation of JPSS. Three to five satellites are planned for the JPSS constellation of satellites. JPSS satellites will be flown, and the scientific data from JPSS will be processed, by the JPSS – Common Ground System (JPSS-CGS).

<span class="mw-page-title-main">Visible Infrared Imaging Radiometer Suite</span>

The Visible Infrared Imaging Radiometer Suite (VIIRS) is a sensor designed and manufactured by the Raytheon Company on board the polar-orbiting Suomi National Polar-orbiting Partnership, NOAA-20, and NOAA-21 weather satellites. VIIRS is one of five key instruments onboard Suomi NPP, launched on October 28, 2011. VIIRS is a whiskbroom scanner radiometer that collects imagery and radiometric measurements of the land, atmosphere, cryosphere, and oceans in the visible and infrared bands of the electromagnetic spectrum.

<span class="mw-page-title-main">NOAA-21</span> NASA/NOAA satellite

NOAA-21, designated JPSS-2 prior to launch, is the second of the United States National Oceanic and Atmospheric Administration (NOAA)'s latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-21 was launched on 10 November 2022 and join NOAA-20 and Suomi NPP in the same orbit. Circling the Earth from pole-to-pole, it will cross the equator about 14 times daily, providing full global coverage twice a day. It was launched with LOFTID.

<span class="mw-page-title-main">NOAA-20</span> NASA satellite

NOAA-20, designated JPSS-1 prior to launch, is the first of the United States National Oceanic and Atmospheric Administration's latest generation of U.S. polar-orbiting, non-geosynchronous, environmental satellites called the Joint Polar Satellite System. NOAA-20 was launched on 18 November 2017 and joined the Suomi National Polar-orbiting Partnership satellite in the same orbit. NOAA-20 operates about 50 minutes behind Suomi NPP, allowing important overlap in observational coverage. Circling the Earth from pole-to-pole, it crosses the equator about 14 times daily, providing full global coverage twice a day. This gives meteorologists information on "atmospheric temperature and moisture, clouds, sea-surface temperature, ocean color, sea ice cover, volcanic ash, and fire detection" so as to enhance weather forecasting including hurricane tracking, post-hurricane recovery by detailing storm damage and mapping of power outages.

<span class="mw-page-title-main">Nimbus 4</span> Former U.S. meteorological satellite

Nimbus 4 was a meteorological satellite. It was the fourth in a series of the Nimbus program.

NOAA-12, also known as NOAA-D before launch, was an American weather satellite operated by National Oceanic and Atmospheric Administration (NOAA), an operational meteorological satellite for use in the National Environmental Satellite, Data, and Information Service (NESDIS). The satellite design provided an economical and stable Sun-synchronous platform for advanced operational instruments to measure the atmosphere of Earth, its surface and cloud cover, and the near-space environment.

NOAA-14, also known as NOAA-J before launch, was an American weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). NOAA-14 continued the third-generation operational, Polar Orbiting Environmental Satellite (POES) series operated by the National Environmental Satellite Service (NESS) of the National Oceanic and Atmospheric Administration (NOAA). NOAA-14 continued the series of Advanced TIROS-N (ATN) spacecraft begun with the launch of NOAA-8 (NOAA-E) in 1983.

References

  1. "NPP Press Kit". NASA. Retrieved 6 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  2. @NASAKennedy. "#NPP's official liftoff time was 02:48:01.828 PDT". Twitter. Retrieved 17 August 2013.PD-icon.svg This article incorporates text from this source, which is in the public domain.
  3. "NPP Satellite details 2011-061A NORAD 37849". N2YO. 25 January 2015. Retrieved 25 January 2015.
  4. Gran, Rani; Steve Cole (25 January 2012). "NASA Renames Earth-Observing Mission in Honor of Satellite Pioneer". Suomi NPP. NASA. Retrieved 29 January 2012.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  5. Herzog, Karen (26 January 2012). "Satellite renamed to honor UW's Suomi". Milwaukee Journal Sentinel. Milwaukee. Retrieved 29 January 2012.
  6. 1 2 Netburn, Deborah (26 January 2012). "The making of NASA's super hi-res blue marble Earth image". Los Angeles Times. Retrieved 29 January 2012.
  7. "NPP Mission". NASA. Archived from the original on 26 October 2001. Retrieved 15 August 2011.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. NASA.gov PD-icon.svg This article incorporates text from this source, which is in the public domain .
  9. History of the Delta Launch Vehicle: Description and Designations
  10. "NPP weather and climate satellite launches". BBC News. 28 October 2011.
  11. "VIRSS 2011-061A". NASA. 14 May 2020. Retrieved 7 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  12. "OMPS 2011-061A". NASA. 14 May 2020. Retrieved 7 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  13. "CERES 2011-061A". NASA. 14 May 2020. Retrieved 7 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  14. "CrIS 2011-061A". NASA. 14 May 2020. Retrieved 7 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  15. "ATMS 2011-061A". NASA. 14 May 2020. Retrieved 7 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  16. VIIRS First Light PD-icon.svg This article incorporates text from this source, which is in the public domain .
  17. "SNPP Operational Status". NOAA. 14 April 2016. Retrieved 6 January 2021.PD-icon.svg This article incorporates text from this source, which is in the public domain .