Western corn rootworm

Last updated

Western corn rootworm
Diabrotica virgifera side.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Coleoptera
Infraorder: Cucujiformia
Family: Chrysomelidae
Genus: Diabrotica
Species:
Subspecies:
D. v. virgifera
Trinomial name
Diabrotica virgifera virgifera
LeConte, 1868

The Western corn rootworm, Diabrotica virgifera virgifera, is one of the most devastating corn rootworm species in North America, especially in the midwestern corn-growing areas such as Iowa. A related species, the Northern corn rootworm, D. barberi, co-inhabits in much of the range and is fairly similar in biology.

Contents

Two other subspecies of D. virgifera are described, including the Mexican corn rootworm (Diabrotica virgifera zeae), a significant pest in its own right, attacking corn in that country.

Corn rootworm larvae can destroy significant percentages of corn if left untreated. In the United States, current estimates show that 30,000,000 acres (12,000,000 ha) of corn (out of 80 million[ clarification needed ] grown) are infested with corn rootworm. The United States Department of Agriculture estimates that corn rootworms cause $1 billion in lost revenue each year, [1] including $800 million in yield loss and $200 million in cost of treatment for corn growers.[ citation needed ]

Life cycle

Diabrotica virgifera virgifera. Diabrotica virgifera LeConte.png
Diabrotica virgifera virgifera.

There are many similarities in the life cycles of the northern and western corn rootworm. Both overwinter in the egg stage in the soil. Eggs, which are deposited in the soil during the summer, are American football-shaped, white, and less than 0.004 inches (0.10 mm) long. Larvae hatch in late May or early June and begin to feed on corn roots. Newly hatched larvae are small, less than .125 inches (3.2 mm) long, white worms. Corn rootworms go through three larval instars, pupate in the soil and emerge as adults in July and August. One generation emerges each year. Larvae have brown heads and a brown marking on the top of the last abdominal segment, giving them a double-headed appearance. Larvae have three pairs of legs, but these are not usually visible without magnification. After feeding for several weeks, the larvae dig a cell in the soil and molt into the pupal stage. The pupal stage is white and has the basic shape of the adult. Adult rootworms are about .25 inches (6.4 mm) long. Western corn rootworms are yellowish with a black stripe on each wing cover. Northern corn rootworm beetles are solid in color and vary from light tan to pale green. [2]

Timing of egg hatch varies from year to year due to temperature differences and location. Males begin to emerge before females. Emergence often continues for a month or more. In years with hot, dry summers, numbers of western corn rootworm beetles may decline rapidly after mid-August, although in summers with less extreme conditions they may be found up until the first frost. [2]

Females mate soon after emergence. Western corn rootworm females need to feed for about two weeks before they can lay eggs. Temperature and food quality influence the pre-oviposition period. Females typically lay eggs in the top 8 inches (200 mm) of soil, although they may be laid more than 12 inches (300 mm) deep, particularly if the soil surface is dry. Western corn rootworm females are more likely to lay some of their eggs below the 8-inch (200 mm) depth than northern corn rootworm females. [2]

Feeding habits

Rootworm larvae can complete development only on corn and a few other species of grasses. Rootworm larvae reared on other grasses (specifically, yellow foxtail) emerged as adults later and had smaller head capsule size as adults compared to larvae reared on corn. [3] Adults feed primarily on corn silk, pollen and kernels on exposed ear tips, although they will feed on leaves and pollen of other plants. Adults begin emerging before corn reproductive tissues are present, adults may feed on leaf tissue, scraping away the green surface tissue and leaving a window-pane appearance. However, adults quickly shift to preferred green silks and pollen as they become available. Northern corn rootworm adults feed on reproductive tissues of the corn plant, but rarely feed on corn leaves. "Northern" adults are more likely than "western" adults to abandon corn and seek pollen or flowers of other plants as corn matures. [2]

Feeding damage

Most of the damage to corn is caused by larval feeding. Hatchlings locate roots and begin feeding on the fine root hairs, burrowing into root tips. As larvae grow, they feed on and tunnel into primary roots. When rootworms are abundant, larval feeding and deterioration of injured roots by root rot pathogens can result in roots being pruned to the stalk base. Severe root injury interferes with the roots' ability to transport water and nutrients, reduces growth and results in reduced grain production. Severe root injury may result in lodging of corn plants, making harvest more difficult. Silk feeding by adults can result in pruning at the ear tip, commonly called silk clipping. In field corn, beetle populations are occasionally high enough to cause severe silk clipping during pollen shed, which may interfere with pollination. [2]

History of invasions

The Western corn rootworm rapidly expanded its range in North America during the second part of the 20th century. It is now present from the southwestern region of the US Corn Belt to the east coast. It was introduced at the end of the 20th century into Europe, where it was first observed near Belgrade, Serbia in 1992. [4] The Serbian outbreak spread north and south to include Greece to Poland and east from Italy to Ukraine. [5] In addition to this large continuous area in Central and southeastern Europe, discontinuous outbreaks have been detected in Europe. The first was discovered near Venice, Italy, in 1998, in northwestern Italy (Piedmont) and Switzerland (canton Ticino) in 2000, northeastern Italy in 2002 (near Pordenone) and 2003 (near Udine), northern Italy (Trentino), Eastern France (Alsace), Switzerland, Belgium, the United Kingdom and the Netherlands in 2003 and the Parisian region, France in 2002, 2004 and 2005. Outbreaks detected in north Switzerland, Belgium, the Netherlands and the Parisian region did not persist. [5] The distribution of the European corn rootworm resulted from several introductions from North America. [6] At least three successive introductions gave rise to outbreaks detected in Serbia in 1992, the Italian Piedmont in 2000, and Ile-de-France in 2002. The European outbreaks observed in Alsace in 2003 and Ile-de-France in 2005 came from two additional introductions from North America, bringing to five the number of transatlantic introductions. [7] The exact North American origin of the European introductions has not yet been found, but the north of the US appears to be the most likely. [7] Small remote outbreaks in southern Germany and north-eastern Italy most likely originated from long-distance dispersal events from Central and southeastern Europe. The large European outbreak is thus likely expanding by stratified dispersal, involving both continuous diffusion and discontinuous long-distance dispersal. This latter mode of dispersal may accelerate expansion in Europe. [8]

Management

Multiple management practices aim to control corn rootworms. These practices include corn variety selection, early planting, insecticides, crop rotation and transgenic corn varieties.[ citation needed ]

Variety

No commercial, non-transgenic resistant corn varieties are available. Several hybrid corn traits reduce damage by increasing stalk strength and root mass size. These characteristics allow a plant to better tolerate rootworm feeding, with reduced likelihood of lodging. [2]

Early planting

Early planted fields that have completed pollen shed are less attractive and therefore have less egg laying activity. Early fields have relatively larger root systems when rootworm feeding starts. This makes them somewhat more tolerant. Practices that promote strong root systems and a generally vigorous crop make corn more tolerant to rootworm feeding and damage. [9]

Insecticides

Soil-applied insecticides effectively control corn rootworms. Insecticide may be warranted in areas that have a history of moderate to high damage. The number of adults present during the previous growing season is the best guide for selecting fields to be treated. [9] However, in some areas of high insecticide use in central Nebraska, populations of corn rootworm beetles have become resistant to certain insecticides. Aldrin resistance was probably introduced independently, at least twice, from North America into Europe. Organophosphates, such as methyl-parathion, may provide effective control of both larval and adult populations in Central and southeastern Europe and in northwest Italy. [10]

Crop rotation

Crop rotation is a consistent and economical means of controlling rootworms the season following an outbreak in corn-growing areas where rootworm beetles primarily lay eggs in corn. As a way to reduce rootworm densities, it is more effective than insecticides. [2] Corn rootworm larvae must feed on corn roots to develop and mature properly. If they hatch in a field without corn, they starve because they cannot move more than 10 to 20 inches (510 mm) in search of food. [9] However, two rootworm biotypes survive rotation. The "soybean" variant was first discovered in central Illinois in the late 1980s and spread throughout Illinois, Indiana, southern Wisconsin and eastern Iowa. [11] Instead of laying eggs into a corn field, the females of the soybean variant mate and then fly into a soybean field to lay their eggs, allowing the larvae to hatch in a field likely to rotate back to corn the following year. In the 1980s northern corn rootworm began to be a problem by beating the corn rotation practice with extended diapause eggs. [12] The eggs remained in the soil for two years or more before hatching, thereby avoiding the soybean year. As of 2017, this adaptation has been observed in areas of Iowa, Minnesota and South Dakota, Wisconsin and Nebraska. [13]

Companion or second crop planting can dramatically increase rootworm populations. Corn with pumpkins or corn following pumpkins are examples of planting patterns that exacerbate rootworm feeding pressure. [14]

Shrestha, Dunbar, French and Gassmann have reported that field history causes variation in the degree of corn rootworm resistance. All the fields they found had corn rootworms resistant to the traits, but they observed that significantly more corn rootworm larvae survived in fields with Bt resistance. They recommend faithful crop rotation not only for reducing the population of the worm, but to slow the adaptation of the worm as well. [15]

Natural enemies

Among natural enemies - Argiope bruennichi, Theridion impressum, Coccinella sp., Pseudophomus rufipes. [16]

Transgenics

Planting rootworm-resistant transgenic corn is another strategy for minimizing damage. [17] Bt corn is effective at reducing root damage and is safer and often cheaper than insecticide. The transgenic traits, isolated from the common soil bacterium Bacillus thuringiensis strain (often referred to as Bt), produce the insect control protein.[ citation needed ]

Bt was first discovered in 1901 by Japanese biologist S. Ishiwatari as the source of disease that was killing large populations of silkworms. Bt was first used as an insecticide in 1920 and spray formulations containing either Bt bacteria or Bt proteins came into use in the 1970s for crop protection, including organic farming operations. Bt insecticides saw expanded use and development in the 1980s as an alternative to synthetic insecticides. Beginning in the 1980s, the genes responsible for making Bt proteins were isolated and transferred into corn plants. Bt was commercially approved in transgenic corn seed in the mid-1990s. Compared to spray formulations, transgenic plants with the Bt protein provide much more effective insect protection throughout the season. Other Bt proteins have been used to genetically modify potatoes, cotton and other types of commercial corn. The two most common brands of transgenic Bt corn are Genuity and Herculex.[ citation needed ] Genuity Smartstax combines Monsanto's VT Triple Pro, Roundup Ready 2, and Acceleron Seed Treatment System technologies, as well as Dow Chemical's Herculex Xtra and Liberty Link technologies. Acceleron, Herculex Xtra, and VT Triple Pro include traits for protection from insect damage.[ citation needed ]

Bt must be ingested to kill the insect. A susceptible larva eats the protein, which then binds to receptors in the larval gut. Binding initiates a cascade of effects that ultimately leads to death. Bt proteins are highly selective on certain categories and species of insects, eliminating insecticide use and its harmful effects to non-target organisms. [18]

Recently, however, strains of rootworms that exhibit Bt resistance have been discovered in several Midwestern US states. [19] According to Monsanto, the "YieldGard VT Triple and Genuity VT Triple PRO corn products" are affected. In 2009, four strains in Iowa were found to have field-evolved resistance to Bt corn. [20] Some rootworms were found to be resistant to two or more Bt toxins in addition to being tolerant to crop rotation. This ability to rapidly evolve to adapt to multiple traits in their new food source has proved to be a challenge for farmers and scientists. That same year, Monsanto, DuPont Pioneer, Syngenta and Dow Agro-Sciences all began to sell "stacked" or pyramid corn seed designed to slow the development of resistance. These products combined traits to increase effectiveness, however, so many of these traits are failing that soon they will run out of ingredients to stack. A new bacterial gene has been discovered by researchers that will kill rootworms, but it is not expected to be available to farmers before 2029. [21]

By 2014 Syngenta Agrisure RW-rootworm strains had been detected in Iowa as well as glyphosate. Agrisure RW-based products entered the market in 2007. However, government officials, academics and companies lack consensus on how to define the resistance phenomenon. The affected fields constituted 0.2% of transgenic US corn acres. Further the affected areas had not been rotated with other crops. [22]

As of December 2018, the corn rootworm has been found to be resistant to all four traits. [23]

Biological solutions

In Austria, an innovative protection method has been developed, using the "mating disruption" method for the first time in corn fields. The according product is called CornProtect. [24] The female bugs distribute pheromones that attract males. With that new method, such pheromones are put on specially treated mineral carriers and are slowly released over the full flying period of the bugs. Mating is significantly reduced, because males become disoriented and less interested in copulating. Reproduction is drastically reduced [25] The application is done with conventional field sprayers which makes it economically very viable. [26]

Related Research Articles

<i>Bacillus thuringiensis</i> Species of bacteria used as an insecticide

Bacillus thuringiensis is a gram-positive, soil-dwelling bacterium, the most commonly used biological pesticide worldwide. B. thuringiensis also occurs naturally in the gut of caterpillars of various types of moths and butterflies, as well on leaf surfaces, aquatic environments, animal feces, insect-rich environments, and flour mills and grain-storage facilities. It has also been observed to parasitize other moths such as Cadra calidella—in laboratory experiments working with C. calidella, many of the moths were diseased due to this parasite.

<span class="mw-page-title-main">Genetically modified maize</span> Genetically modified crop

Genetically modified maize (corn) is a genetically modified crop. Specific maize strains have been genetically engineered to express agriculturally-desirable traits, including resistance to pests and to herbicides. Maize strains with both traits are now in use in multiple countries. GM maize has also caused controversy with respect to possible health effects, impact on other insects and impact on other plants via gene flow. One strain, called Starlink, was approved only for animal feed in the US but was found in food, leading to a series of recalls starting in 2000.

Agricultural biotechnology, also known as agritech, is an area of agricultural science involving the use of scientific tools and techniques, including genetic engineering, molecular markers, molecular diagnostics, vaccines, and tissue culture, to modify living organisms: plants, animals, and microorganisms. Crop biotechnology is one aspect of agricultural biotechnology which has been greatly developed upon in recent times. Desired trait are exported from a particular species of Crop to an entirely different species. These transgene crops possess desirable characteristics in terms of flavor, color of flowers, growth rate, size of harvested products and resistance to diseases and pests.

<span class="mw-page-title-main">Insecticide</span> Pesticide used against insects

Insecticides are pesticides used to kill insects. They include ovicides and larvicides used against insect eggs and larvae, respectively. Insecticides are used in agriculture, medicine, industry and by consumers. Insecticides are claimed to be a major factor behind the increase in the 20th-century's agricultural productivity. Nearly all insecticides have the potential to significantly alter ecosystems; many are toxic to humans and/or animals; some become concentrated as they spread along the food chain.

<span class="mw-page-title-main">Pesticide resistance</span> Decreased effectiveness of a pesticide on a pest

Pesticide resistance describes the decreased susceptibility of a pest population to a pesticide that was previously effective at controlling the pest. Pest species evolve pesticide resistance via natural selection: the most resistant specimens survive and pass on their acquired heritable changes traits to their offspring. If a pest has resistance then that will reduce the pesticide's efficacy – efficacy and resistance are inversely related.

<span class="mw-page-title-main">Genetically modified crops</span> Plants used in agriculture

Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

<i>Acalymma vittatum</i> Species of beetle

Acalymma vittatum, the striped cucumber beetle, is a beetle of the family Chrysomelidae and a serious pest of cucurbit crops in both larval and adult stages. It is distributed from eastern North America to the Rocky Mountains. It is replaced in the west by Acalymma trivittatum, a duller species often with greyish or pale white elytra rather than yellow.

<span class="mw-page-title-main">Pink bollworm</span> Species of moth

The pink bollworm is an insect known for being a pest in cotton farming. The adult is a small, thin, gray moth with fringed wings. The larva is a dull white caterpillar with eight pairs of legs with conspicuous pink banding along its dorsum. The larva reaches one half inch in length.

<i>Diabrotica undecimpunctata</i> Species of beetle

Diabrotica undecimpunctata, the spotted cucumber beetle or southern corn rootworm, is a species of cucumber beetle that is native to North America. The species can be a major agricultural pest insect in North America. Spotted cucumber beetles cause damage to crops in the larval and adult stages of their life cycle. Larvae feed on the roots of the emerging plants, which causes the most damage since the young plants are more vulnerable. In the adult stage the beetles cause damage by eating the flowers, leaves, stems, and fruits of the plant The beetles can also spread diseases such as bacterial wilt and mosaic virus.

Bt cotton is a genetically modified pest resistant plant cotton variety that produces an insecticide to combat bollworm.

<span class="mw-page-title-main">Genetically modified food controversies</span> Controversies over GMO food

Genetically modified food controversies are disputes over the use of foods and other goods derived from genetically modified crops instead of conventional crops, and other uses of genetic engineering in food production. The disputes involve consumers, farmers, biotechnology companies, governmental regulators, non-governmental organizations, and scientists. The key areas of controversy related to genetically modified food are whether such food should be labeled, the role of government regulators, the objectivity of scientific research and publication, the effect of genetically modified crops on health and the environment, the effect on pesticide resistance, the impact of such crops for farmers, and the role of the crops in feeding the world population. In addition, products derived from GMO organisms play a role in the production of ethanol fuels and pharmaceuticals.

<span class="mw-page-title-main">European corn borer</span> Species of moth

The European corn borer, also known as the European corn worm or European high-flyer, is a moth of the family Crambidae. It is a pest of grain, particularly maize. The insect is native to Europe, originally infesting varieties of millet, including broom corn. The European corn borer was first reported in North America in 1917 in Massachusetts, but was probably introduced from Europe several years earlier. Since its initial discovery in the Americas, the insect has spread into Canada and westwards across the United States to the Rocky Mountains.

<span class="mw-page-title-main">DIMBOA</span> Chemical compound

DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) is a naturally occurring hydroxamic acid, a benzoxazinoid. DIMBOA is a powerful antibiotic present in maize, wheat, rye, and related grasses,

<i>Chloridea virescens</i> Species of moth

Chloridea virescens, commonly known as the tobacco budworm, is a moth of the family Noctuidae found throughout the eastern and southwestern United States along with parts of Central America and South America.

<span class="mw-page-title-main">SmartStax</span> Seeds protected against bugs, weeds

SmartStax is a brand of genetically modified seed made through a collaboration between Monsanto Company and Dow Chemical Company. It takes advantage of multiple modes of insect protection and herbicide tolerance. SmartStax takes advantage of Yieldgard VT Triple (Monsanto), Herculex Xtra (Dow), RoundUp Ready 2 (Monsanto), and Liberty Link (Dow). The traits included protect against above-ground insects, below-ground insects, and provide broad herbicide tolerance. It is currently available for corn, but cotton, soybean, and specialty crop variations are to be released. Previously, the most genes artificially added to a single plant was three, but Smartstax includes eight. Smartstax also incorporates Monsanto's Acceleron Seed Treatment System which protects against insects at the earliest stages of development. Smartstax is sold under the Genuity (Monsanto) and Mycogen (Dow) brands.

<i>Spodoptera eridania</i> Species of moth

Spodoptera eridania is a moth that is known to be a pest. They are one of the most important defoliators in the tropical and subtropical regions of the western hemisphere that feed heavily on plants while they are young, often resulting in skeleton leaves on their food plants. They are also heavy feeders on tomato in Florida. There is a lot of development in producing pesticides against the S. eridania, specifically a neem-based pesticide that can result in smaller and prolonged development. The wingspan is 33–38 mm. Adults are on wing year-round. The larvae feed on various weeds but prefer Amaranthus species and Phytolacca americana.

<i>Diabrotica speciosa</i> Species of beetle

Diabrotica speciosa, also known as the cucurbit beetle and in Spanish as vaquita de San Antonio is an insect pest native to South America. Its larvae feed on the roots of crops. The cucurbit beetle is also known to transmit several viruses such as comoviruses and different mosaic viruses. This is native to South America and is now distributed in Central America and other global areas.

<span class="mw-page-title-main">Cucumber beetle</span> Common name for several species of beetles

Cucumber beetle is a common name given to members of two genera of beetles, Diabrotica and Acalymma, both in the family Chrysomelidae. The adults can be found on cucurbits such as cucumbers and a variety of other plants. Many are notorious pests of agricultural crops. The larvae of several cucumber beetles are known as corn rootworms.

<i>Diabrotica balteata</i> Species of beetle

Diabrotica balteata is a species of cucumber beetle in the family Chrysomelidae known commonly as the banded cucumber beetle. It occurs in the Americas, where its distribution extends from the United States to Colombia and Venezuela in South America. It is also present in Cuba. It is a pest of a variety of agricultural crops.

<span class="mw-page-title-main">Cry6Aa</span>

Cry6Aa is a toxic crystal protein generated by the bacterial family Bacillus thuringiensis during sporulation. This protein is a member of the alpha pore forming toxins family, which gives it insecticidal qualities advantageous in agricultural pest control. Each Cry protein has some level of target specificity; Cry6Aa has specific toxic action against coleopteran insects and nematodes. The corresponding B. thuringiensis gene, cry6aa, is located on bacterial plasmids. Along with several other Cry protein genes, cry6aa can be genetically recombined in Bt corn and Bt cotton so the plants produce specific toxins. Insects are developing resistance to the most commonly inserted proteins like Cry1Ac. Since Cry6Aa proteins function differently than other Cry proteins, they are combined with other proteins to decrease the development of pest resistance. Recent studies suggest this protein functions better in combination with other virulence factors such as other Cry proteins and metalloproteinases.>

References

  1. Metcalf, R. L. (1986). "Foreword". In J. L. Krysan; T. A. Miller (eds.). In Methods for the Study of Pest Diabrotica. New York: Springer. pp. vii–xv.
  2. 1 2 3 4 5 6 7 Wright, R.; Meinke, L.; Jarvi, K. (July 1999). "Corn Rootworm Management". University of Nebraska. Archived from the original on 2007-02-05. Retrieved 2007-02-03.
  3. Ellsbury, M. M.; Banken, K. R.; Clay, S. A.; Forcella, F. (2005). "Interactions Among Western Corn Rootworm (Coleoptera: Chrysomelidae), Yellow Foxtail, and Corn". Environmental Entomology. 34 (3): 627–634. doi: 10.1603/0046-225X-34.3.627 .
  4. Gray, M. E.; Sappington, T. W.; Miller, N. J.; Moeser, J.; Bohn, M. O. (2009). "Adaptation and Invasiveness of Western Corn Rootworm: Intensifying Research on a Worsening Pest". Annual Review of Entomology. 54: 303–21. doi:10.1146/annurev.ento.54.110807.090434. PMID   19067634. S2CID   24392625.
  5. 1 2 "European and Mediterranean Plant Protection Organization (EPPO)". Eppo.int. Retrieved 2014-04-04.
  6. Miller, N.; Estoup, A; Toepfer, S; Bourguet, D; Lapchin, L; Derridj, S; Kim, K. S.; Reynaud, P; Furlan, L; Guillemaud, T (2005). "Multiple Transatlantic Introductions of the Western Corn Rootworm". Science. 310 (5750): 992. doi:10.1126/science.1115871. PMID   16284172. S2CID   2489144.
  7. 1 2 Ciosi, M.; Miller, N. J.; Kim, K. S.; Giordano, R.; Estoup, A.; Guillemaud, T. (2008). "Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: Multiple transatlantic introductions with various reductions of genetic diversity". Molecular Ecology. 17 (16): 3614–27. doi:10.1111/j.1365-294X.2008.03866.x. PMID   18662220. S2CID   16870803.
  8. Ciosi, M.; Miller, N. J.; Toepfer, S.; Estoup, A.; Guillemaud, T. (2011). "Stratified dispersal and increasing genetic variation during the invasion of Central Europe by the western corn rootworm, Diabrotica virgifera virgifera" (PDF). Evolutionary Applications. 4 (1): 54–70. doi:10.1111/j.1752-4571.2010.00133.x. PMC   3352514 . PMID   25567953.
  9. 1 2 3 Peairs, F. B. and S. D. Pilcher. Western Corn Rootworm Colorado State University. March 24, 2006. Viewed February 3, 2007
  10. Ciosi, M.; Toepfer, S.; Li, H.; Haye, T.; Kuhlmann, U.; Wang, H.; Siegfried, B.; Guillemaud, T. (2009). "European populations of Diabrotica virgifera virgiferaare resistant to aldrin, but not to methyl-parathion" (PDF). Journal of Applied Entomology. 133 (4): 307–314. doi:10.1111/j.1439-0418.2008.01363.x. S2CID   10040670.
  11. Rice, M. E. and J. J. Tollefson. The variant western corn rootworm in Iowa. Iowa State University. March 13, 2006. Viewed February 3, 2007.
  12. Willson H. R. and J. B. Eisley. Monitoring Western Corn Rootworm Activity in Soybeans to Predict Rootworm Injury in First-Year Corn. August 2001. Viewed February 3, 2007.
  13. Calles-Torrez, Veronica; Knodel, Janet J; Boetel, Mark A; French, B Wade; Fuller, Billy W; Ransom, Joel K (2019-05-22). "Field-Evolved Resistance of Northern and Western Corn Rootworm (Coleoptera: Chrysomelidae) Populations to Corn Hybrids Expressing Single and Pyramided Cry3Bb1 and Cry34/35Ab1 Bt Proteins in North Dakota". Journal of Economic Entomology. 112 (4): 1875–1886. doi:10.1093/jee/toz111. ISSN   0022-0493. PMID   31114868. S2CID   162170836.
  14. Grozea, Ioana; Stef, Ramona; Virteiu, Ana Maria; Molnar, Levente; Carabet, Alin; Puia, Carmen; Dobrin, Ionela (2015-11-27). "Feeding behaviour of Diabrotica virgifera virgifera adults on corn crops". Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture. 72 (2). doi: 10.15835/buasvmcn-hort:11393 . ISSN   1843-5394.
  15. Shrestha, Ram B.; Dunbar, Mike W.; French, Bryan W.; Gassmann, Aaron J. (2018-07-03). "Effects of field history on resistance to Bt maize by western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae)". PLOS ONE. 13 (7): e0200156. Bibcode:2018PLoSO..1300156S. doi: 10.1371/journal.pone.0200156 . ISSN   1932-6203. PMC   6029802 . PMID   29969492.
  16. Grozea, I; Carabet, A; Chirita, R; Badea, AM (2008). "Natural enemies in control of invasive species Diabrotica virgifera Virgifera from maize crops". Commun Agric Appl Biol Sci. 73 (3): 501–8. PMID   19226790.
  17. Devos, Yann; Lisa N. Meihls; Jószef Kiss; Bruce E. Hibbard (2013). "Resistance evolution to the first generation of genetically modified Diabrotica-active Bt-maize events by western corn rootworm: management and monitoring considerations". Transgenic Research. 22 (2): 269–299. doi:10.1007/s11248-012-9657-4. PMID   23011587. S2CID   10821353.
  18. The Dow Chemical Company. Product Safety Assessment (PSA): Herculex RW Rootworm Protection. September 26, 2006. Viewed February 3, 2007.
  19. Gassmann, A. J.; Petzold-Maxwell, J. L.; Keweshan, R. S.; Dunbar, M. W. (2011). "Field-Evolved Resistance to Bt Maize by Western Corn Rootworm". PLOS ONE. 6 (7): e22629. Bibcode:2011PLoSO...622629G. doi: 10.1371/journal.pone.0022629 . PMC   3146474 . PMID   21829470.
  20. Gassman, Aaron J (July 2012). "Field-evolved resistance to Bt maize by western corn rootworm: Predictions from the laboratory and effects in the field". Journal of Invertebrate Pathology. 110 (3): 287–293. doi:10.1016/j.jip.2012.04.006. PMID   22537837.
  21. Nordhaus, Hannah (2017-02-14). "Cornboy vs. the Billion-Dollar Bug". Scientific American. 316 (3): 64–71. Bibcode:2017SciAm.316c..64N. doi:10.1038/scientificamerican0317-64. ISSN   0036-8733. PMID   28207712.
  22. Bunge, Jacob (April 1, 2014). "Farm Belt Pest Gnaws at Syngenta". Wall Street Journal. Retrieved 2014-04-04.
  23. Gullickson, Gil (December 1, 2018). "Why Managing Corn Rootworm Just Became More Complicated". Successful Farming.
  24. "Lithos natural | CornProtect".
  25. "Maiswurzelbohrer verwirren".
  26. "Mit Pheromonen gegen den Maiswurzelbohrer". 2019-02-04.