Workplace health surveillance

Last updated

Workplace health surveillance or occupational health surveillance (U.S.) is the ongoing systematic collection, analysis, and dissemination of exposure and health data on groups of workers. [1] [2] The Joint ILO/WHO Committee on Occupational Health at its 12th Session in 1995 defined an occupational health surveillance system as "a system which includes a functional capacity for data collection, analysis and dissemination linked to occupational health programmes". [3]

Contents

The concept is new to occupational health and is frequently confused with medical screening. Health screening refers to the early detection and treatment of diseases associated with particular occupations, while workplace health surveillance refers to the removal of the causative factors. [4]

Aspects

Medical surveillance

A video about medical testing at a workplace as part of a NIOSH Health Hazard Evaluation Program investigation

The mission of a medical surveillance program is to keep workers healthy and ensure that employers are meeting OSHA standards in health and safety. [5] Medical surveillance has an emphasis on prevention: it is designed to detect potential workplace hazards before irreversible health effects can occur. [6] Clinicians with expertise in occupational health, industrial exposures, and respiratory protection screen workers with physical examinations, blood testing, spirometry (a measurement lung function), and audiometry. Screenings are performed at set intervals, often annually. The clinicians providing medical surveillance services include board-certified occupational and environmental medicine physicians, mid-level practitioners, nurses, and NIOSH-certified spirometry technicians. [5] [6]

Medical surveillance targets actual health events or a change in a biologic function of an exposed person or persons. Medical surveillance is a second line of defense behind the implementation of direct hazard controls such as engineering controls, administrative controls, and personal protective equipment. NIOSH recommends the medical surveillance of workers when they are exposed to hazardous materials. The elements of a medical surveillance program generally include the following: [7]

  1. An initial medical examination and collection of medical and occupational histories
  2. Periodic medical examinations at regularly scheduled intervals, including specific medical screening tests when warranted
  3. More frequent and detailed medical examinations as indicated on the basis of findings from these examinations
  4. Post-incident examinations and medical screening following uncontrolled or non-routine increases in exposures such as spills
  5. Worker training to recognize symptoms of exposure to a given hazard
  6. A written report of medical findings
  7. Employer actions in response to identification of potential hazards

When the purpose of a medical surveillance program is to detect early signs of work-related illness and disease, it is considered a type of medical screening, to detect preclinical changes in organ function or changes before a person would normally seek medical care and when intervention is beneficial The establishment of a medical screening program should follow established criteria, and specific disease endpoints must be able to be determined by the test selected. [7]

Medical examinations and tests are used in many workplaces to determine whether an employee is able to perform the essential functions of the job. Medical surveillance of workers is also required by law in the United States when there is exposure to a specific workplace hazard, and OSHA has a number of standards that require medical surveillance of workers In addition to substance-specific standards, OSHA has standards with broader applicability. For example, employers must follow the medical evaluation requirements of OSHA's respiratory protection standard ( 29 CFR 1910.134 ) when respirators are necessary to protect worker health. Likewise, the OSHA standard for occupational exposure to hazardous chemicals in laboratories ( 29 CFR 1910.1450 ) requires medical consultation following the accidental release of hazardous chemicals. NIOSH also recommends medical surveillance, including screening, of workers when there is exposure to certain occupational hazards. [7]

Hazard surveillance

Hazard surveillance involves identifying potentially hazardous practices or exposures in the workplace and assessing the extent to which they can be linked to workers, the effectiveness of controls, and the reliability of exposure measures. Workplace hazards can be chemical, biological, physical, ergonomic, psychosocial, or safety-related in nature. [8] Hazard surveillance is an essential component of any occupational health surveillance effort and is used for defining the elements of the risk management program. Critical elements of a risk management program include recognizing potential exposures and taking appropriate actions to minimize them (for example, implementing engineering controls, employing good work practices, and using personal protective equipment). Hazard surveillance should include the identification of work tasks and processes that involve the production and use of hazardous materials, and should be viewed as one of the most critical components of any risk management program. [7]

Hazard surveillance includes elements of hazard and exposure assessment. The hazard assessment involves reviewing the best available information concerning toxicity of materials. Such an assessment may come from databases, texts, and published literature or available regulations or guidelines. Human studies, such as epidemiologic investigations and case series or reports, and animal studies may also provide valuable information. The exposure assessment involves evaluating relevant exposure routes (inhalation, ingestion, dermal, and/or injection), amount, duration, and frequency (i.e., dose), as well as whether exposure controls are in place and how protective they are. When data are not available, this will be a qualitative process. [1]

Occupational Health Indicators (OHIs)

In 1998, the Council of State and Territorial Epidemiologists (CSTE) joined the CDC's National Institute for Occupational Safety and Health (NIOSH) to form the Occupational Health Surveillance Work Group in order to prioritize occupational health conditions to be placed under surveillance. [9] The Work Group recommended that states use 19 occupational health indicators based on the availability of easily obtainable statewide data, the public health importance of the occupational health effect or exposure, and the potential for intervention activities. [9]

These indicators are useful in assessing the ongoing policies and preventive measures but they also have some limitations. Among the major limitations are the underreporting of occupational health disorders, the inability to recognize potential occupational association of the disorder by health care workers, difficulties in attributing diseases with long latency or multiple causes (such as lung cancer) to occupational exposures, exclusion of special populations (such as self-employed or military personnel), and differences between state-specific databases. [9]

Data Sources

Data for the OHIs come from multiple sources including:

Tools

The usefulness of a surveillance tool may depend on what hazards are present in the workplace and the health effects those hazards may cause. For example, hearing tests will be helpful when noise exposures are present, while tests assessing lung function or biomonitoring may be useful when airborne agents are present. It is also important to distinguish between tools using medical surveillance (measuring health effects) and hazard surveillance/exposure assessment (physical measurements of the type and severity of hazard present). Periodic testing, including a baseline exam when an employee is hired, can often help detect a decline in function by comparing previous results. [15]

Hearing exam HearingExam.jpg
Hearing exam

Medical surveillance tools

Confidentiality of information

Most countries have specific regulations for individual health data, which require that the worker be informed if this information is ever shared with any third party. Occupational Health Records (OHR) have the same protections as any medical record that has confidential health information. Employers must store OHR in a secured area free from unauthorized access, use, or disclosure. Workers should have the right to access this information whenever they wish.

Related Research Articles

<span class="mw-page-title-main">Isocyanate</span> Chemical group (–N=C=O)

In organic chemistry, isocyanate is the functional group with the formula R−N=C=O. Organic compounds that contain an isocyanate group are referred to as isocyanates. An organic compound with two isocyanate groups is known as a diisocyanate. Diisocyanates are manufactured for the production of polyurethanes, a class of polymers.

<span class="mw-page-title-main">Personal protective equipment</span> Equipment designed to help protect an individual from hazards

Personal protective equipment (PPE) is protective clothing, helmets, goggles, or other garments or equipment designed to protect the wearer's body from injury or infection. The hazards addressed by protective equipment include physical, electrical, heat, chemicals, biohazards, and airborne particulate matter. Protective equipment may be worn for job-related occupational safety and health purposes, as well as for sports and other recreational activities. Protective clothing is applied to traditional categories of clothing, and protective gear applies to items such as pads, guards, shields, or masks, and others. PPE suits can be similar in appearance to a cleanroom suit.

<span class="mw-page-title-main">National Institute for Occupational Safety and Health</span> US federal government agency for preventing work-related health and safety problems

The National Institute for Occupational Safety and Health is the United States federal agency responsible for conducting research and making recommendations for the prevention of work-related injury and illness. NIOSH is part of the Centers for Disease Control and Prevention (CDC) within the U.S. Department of Health and Human Services. Despite its name, it is not part of either the National Institutes of Health nor OSHA. Its current director is John Howard.

Occupational noise is the amount of acoustic energy received by an employee's auditory system when they are working in the industry. Occupational noise, or industrial noise, is often a term used in occupational safety and health, as sustained exposure can cause permanent hearing damage. Occupational noise is considered an occupational hazard traditionally linked to loud industries such as ship-building, mining, railroad work, welding, and construction, but can be present in any workplace where hazardous noise is present.

<span class="mw-page-title-main">Occupational hygiene</span> Management of workplace health hazards

Occupational hygiene is the anticipation, recognition, evaluation, control, and confirmation (ARECC) of protection from risks associated with exposures to hazards in, or arising from, the workplace that may result in injury, illness, impairment, or affect the well-being of workers and members of the community. These hazards or stressors are typically divided into the categories biological, chemical, physical, ergonomic and psychosocial. The risk of a health effect from a given stressor is a function of the hazard multiplied by the exposure to the individual or group. For chemicals, the hazard can be understood by the dose response profile most often based on toxicological studies or models. Occupational hygienists work closely with toxicologists for understanding chemical hazards, physicists for physical hazards, and physicians and microbiologists for biological hazards. Environmental and occupational hygienists are considered experts in exposure science and exposure risk management. Depending on an individual's type of job, a hygienist will apply their exposure science expertise for the protection of workers, consumers and/or communities.

<span class="mw-page-title-main">Chemical hazard</span> Non-biological substance that has the potential to cause harm to life or health

A chemical hazard is an abiotic substance with the capacity to cause harm to organisms. While lots of chemicals are used routinely, exposure to certain chemicals can cause acute or long-term adverse health effects. Main classifications of chemical hazards include asphyxiants, corrosives, irritants, sensitizers, carcinogens, mutagens, teratogens, reactants, and flammables. In the workplace, exposure to chemical hazards is a type of occupational hazard. The use of protective personal equipment (PPE) may substantially reduce the risk of damage from contact with hazardous materials.

<span class="mw-page-title-main">Occupational hazard</span> Hazard experienced in the workplace

An occupational hazard is a hazard experienced in the workplace. This encompasses many types of hazards, including chemical hazards, biological hazards (biohazards), psychosocial hazards, and physical hazards. In the United States, the National Institute for Occupational Safety and Health (NIOSH) conduct workplace investigations and research addressing workplace health and safety hazards resulting in guidelines. The Occupational Safety and Health Administration (OSHA) establishes enforceable standards to prevent workplace injuries and illnesses. In the EU, a similar role is taken by EU-OSHA.

A recommended exposure limit (REL) is an occupational exposure limit that has been recommended by the United States National Institute for Occupational Safety and Health. The REL is a level that NIOSH believes would be protective of worker safety and health over a working lifetime if used in combination with engineering and work practice controls, exposure and medical monitoring, posting and labeling of hazards, worker training and personal protective equipment. To formulate these recommendations, NIOSH evaluates all known and available medical, biological, engineering, chemical, trade, and other information. Although not legally enforceable limits, RELS are transmitted to the Occupational Safety and Health Administration (OSHA) or the Mine Safety and Health Administration (MSHA) of the U.S. Department of Labor for use in promulgating legal standards.

<span class="mw-page-title-main">Health Hazard Evaluation Program</span>

The Health Hazard Evaluation (HHE) program is a workplace health program administered by the National Institute for Occupational Safety and Health (NIOSH). NIOSH developed the HHE program to comply with a mandate in the Occupational Safety and Health Act of 1970 to investigate workplace health hazards reported by employers and employees. According to Section 20(a)(6) of the Act, the Secretary of Health and Human Services is authorized "following a written request by any employer or authorized representative of employees, to determine whether any substance normally found in the place of employment has potentially toxic effects in such concentrations as used or found."

The US National Institute for Occupational Safety and Health funds the Adult Blood Lead Epidemiology and Surveillance (ABLES) program, a state-based surveillance program of laboratory-reported adult blood lead levels. In 2009, the ABLES program updated its case definition for an Elevated Blood Lead Level to a blood lead concentration equal or greater than 10 micrograms per deciliter (10 µg/dL). This chart shows CDC/NIOSH/ABLES Elevated blood lead level case definition in perspective.

An occupational fatality is a death that occurs while a person is at work or performing work related tasks. Occupational fatalities are also commonly called "occupational deaths" or "work-related deaths/fatalities" and can occur in any industry or occupation.

<span class="mw-page-title-main">Physical hazard</span> Hazard due to a physical agent

A physical hazard is an agent, factor or circumstance that can cause harm with contact. They can be classified as type of occupational hazard or environmental hazard. Physical hazards include ergonomic hazards, radiation, heat and cold stress, vibration hazards, and noise hazards. Engineering controls are often used to mitigate physical hazards.

<span class="mw-page-title-main">Occupational safety and health</span> Field concerned with the safety, health and welfare of people at work

Occupational safety and health (OSH) or occupational health and safety (OHS), also known simply as occupational health or occupational safety, is a multidisciplinary field concerned with the safety, health, and welfare of people at work. These terms also refer to the goals of this field, so their use in the sense of this article was originally an abbreviation of occupational safety and health program/department etc. OSH is related to the fields of occupational medicine and occupational hygiene.

<span class="mw-page-title-main">Artificial butter flavoring</span> Culinary liquid mimicking flavor of butter

Artificial butter flavoring is a flavoring used to give a food the taste and smell of butter. It may contain diacetyl, acetylpropionyl, or acetoin, three natural compounds in butter that contribute to its characteristic taste and smell. Manufacturers of margarines or similar oil-based products typically add it to make the final product butter-flavored, because it would otherwise be relatively tasteless.

<span class="mw-page-title-main">Safe-In-Sound award</span>

The Safe-in-Sound Excellence in Hearing Loss Prevention Award is an occupational health and safety award that was established in 2007 through a partnership between the National Institute for Occupational Safety and Health (NIOSH) and the National Hearing Conservation Association (NHCA). In 2018, the partnership was extended to include the Council for Accreditation in Occupational Hearing Conservation (CAOHC).

<span class="mw-page-title-main">Occupational hearing loss</span> Form of hearing loss

Occupational hearing loss (OHL) is hearing loss that occurs as a result of occupational hazards, such as excessive noise and ototoxic chemicals. Noise is a common workplace hazard, and recognized as the risk factor for noise-induced hearing loss and tinnitus but it is not the only risk factor that can result in a work-related hearing loss. Also, noise-induced hearing loss can result from exposures that are not restricted to the occupational setting.

Occupational heat stress is the net load to which a worker is exposed from the combined contributions of metabolic heat, environmental factors, and clothing worn which results in an increase in heat storage in the body. Heat stress can result in heat-related illnesses, such as heat stroke, hyperthermia, heat exhaustion, heat cramps, heat rashes and chronic kidney disease. Although heat exhaustion is less severe, heat stroke is a medical emergency and requires emergency treatment, which if not provided can even lead to death.

Engineering controls are strategies designed to protect workers from hazardous conditions by placing a barrier between the worker and the hazard or by removing a hazardous substance through air ventilation. Engineering controls involve a physical change to the workplace itself, rather than relying on workers' behavior or requiring workers to wear protective clothing.

<span class="mw-page-title-main">Occupational dust exposure</span>

Occupational dust exposure can occur in various settings, including agriculture, forestry, and mining. Dust hazards include those that arise from handling grain and cotton, as well as from mining coal. Wood dust, commonly referred to as "sawdust", is another occupational dust hazard that can pose a risk to workers' health.

The health and safety hazards of nanomaterials include the potential toxicity of various types of nanomaterials, as well as fire and dust explosion hazards. Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, are subjects of ongoing research. Of the possible hazards, inhalation exposure appears to present the most concern, with animal studies showing pulmonary effects such as inflammation, fibrosis, and carcinogenicity for some nanomaterials. Skin contact and ingestion exposure, and dust explosion hazards, are also a concern.

References

PD-icon.svg This article incorporates public domain material from websites or documents of the National Institute for Occupational Safety and Health.

  1. 1 2 "Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers". U.S. National Institute for Occupational Safety and Health: 146. April 2013. doi: 10.26616/NIOSHPUB2013145 . Retrieved 2017-04-27.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  2. "Worker Health Surveillance". U.S. National Institute for Occupational Safety and Health. Retrieved 2017-04-27.
  3. "Occupational Safety and Health". International Labour Organization . Retrieved 2017-04-27.
  4. Eliasson, Kristina; Dahlgren, Gunilla; Hellman, Therese; Lewis, Charlotte; Palm, Peter; Svartengren, Magnus; Nyman, Teresia (2021-02-19). "Company Representatives' Experiences of Occupational Health Surveillance for Workers Exposed to Hand-Intensive Work: A Qualitative Study". International Journal of Environmental Research and Public Health. 18 (4): 2018. doi: 10.3390/ijerph18042018 . ISSN   1660-4601. PMC   7922478 . PMID   33669705.
  5. 1 2 "About Us". University of California, Davis Medical Surveillance Program. Retrieved 2012-08-07.
  6. 1 2 "Medical Screening and Surveillance". U.S. Occupational Safety and Health Administration . Retrieved 2012-08-07.
  7. 1 2 3 4 "Current Intelligence Bulletin 60: Interim Guidance for Medical Screening and Hazard Surveillance for Workers Potentially Exposed to Engineered Nanoparticles". U.S. National Institute for Occupational Safety and Health: 3–5. February 2009. doi: 10.26616/NIOSHPUB2009116 . Retrieved 2017-04-26.PD-icon.svg This article incorporates text from this source, which is in the public domain .
  8. Safety, Government of Canada, Canadian Centre for Occupational Health and. "Hazards | Canadian Centre for Occupational Health and Safety". www.ccohs.ca. Retrieved 2018-01-29.
  9. 1 2 3 "Indicators for Occupational Health Surveillance" (PDF). Department of Health and Human Services, Centers for Disease Control and Prevention. January 19, 2007. Retrieved February 20, 2018.
  10. "Injuries, Illnesses, and Fatalities". www.bls.gov. Retrieved 2018-02-20.
  11. "Census of Fatal Occupational Injuries (CFOI) – Current and Revised Data". www.bls.gov. Retrieved 2018-02-20.
  12. "National Poison Data System". www.aapcc.org. Retrieved 2018-02-20.
  13. "CDC – Adult Blood Lead Epidemiology and Surveillance (ABLES) – NIOSH Workplace Safety and Health Topic". www.cdc.gov. 2018-01-19. Retrieved 2018-02-20.
  14. "Establishment Search Page | Occupational Safety and Health Administration". www.osha.gov. Retrieved 2018-02-20.
  15. "1910.1025 App B - Employee standard summary | Occupational Safety and Health Administration". www.osha.gov. Retrieved 2021-03-07.
  16. 1 2 3 4 "Occupational Medicine". www.iaff.org. Retrieved 2018-02-01.
  17. "OSHA Publications – Pulmonary Function Test | Occupational Safety and Health Administration". www.osha.gov. Retrieved 2018-02-01.
  18. "CDC – Spirometry – NIOSH Workplace Safety and Health Topic". www.cdc.gov. 2017-12-08. Retrieved 2018-02-01.
  19. "Biological monitoring (biomonitoring): OSHwiki". oshwiki.eu. Retrieved 2018-02-01.
  20. Walker, Jennifer Junnila; Cleveland, Leanne M.; Davis, Jenny L.; Seales, Jennifer S. (2013-01-01). "Audiometry Screening and Interpretation". American Family Physician. 87 (1): 41–47. ISSN   0002-838X. PMID   23317024.
  21. "HAVS risk assessment guide – SHP – Health and Safety News, Legislation, PPE, CPD and Resources". SHP – Health and Safety News, Legislation, PPE, CPD and Resources. 2008-09-21. Retrieved 2018-02-01.
  22. "Dermatology – Occupational Dermatology – Penn State Health". hmc.pennstatehealth.org. Retrieved 2018-02-01.