Acanthodii

Last updated

Acanthodii
Temporal range: Early Silurian–Permian
Nerepisacanthus.png
Nerepisacanthus , a Silurian acanthodian
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Eugnathostomata
Class: Acanthodii
Owen, 1846
Orders

Acanthodii or acanthodians is an extinct class of gnathostomes (jawed fishes). They are currently considered to represent a paraphyletic grade of various fish lineages basal to extant Chondrichthyes, which includes living sharks, rays, and chimaeras. Acanthodians possess a mosaic of features shared with both osteichthyans (bony fish) and chondrichthyans (cartilaginous fish). In general body shape, they were similar to modern sharks, but their epidermis was covered with tiny rhomboid platelets like the scales of holosteians (gars, bowfins). [1]

Contents

The popular name "spiny sharks" is because they were superficially shark-shaped, with a streamlined body, paired fins, a strongly upturned tail, and stout, largely immovable bony spines supporting all the fins except the tail—hence, "spiny sharks". However, acanthodians are not true sharks; their close relation to modern cartilaginous fish can lead them to be considered "stem-sharks". Acanthodians had a cartilaginous skeleton, but their fins had a wide, bony base and were reinforced on their anterior margin with a dentine spine. As a result, fossilized spines and scales are often all that remains of these fishes in ancient sedimentary rocks. The earliest acanthodians were marine, but during the Devonian, freshwater species became predominant.[ citation needed ]

Acanthodians have been divided into four orders: Acanthodiformes, Climatiiformes, Diplacanthiformes, and Ischnacanthiformes. [2] "Climatiiformes" is a paraphyletic assemblage of early acanthodians such as climatiids, gyracanthids, and diplacanthids; they had robust bony shoulder girdles and many small sharp spines ("intermediate" or "prepelvic" spines) between the pectoral and pelvic fins. The climatiiform subgroup Diplacanthida has subsequently been elevated to its own order, Diplacanthiformes. Ischnacanthiforms were predators with tooth plates fused to their jaws. Acanthodiforms were filter feeders with a single dorsal fin, toothless jaws, and long gill rakers. They were the last and most specialized off the traditional acanthodians, as they survived up until the Permian period.[ citation needed ]

Characteristics

Three acanthodians from the Early Devonian of Great Britain: Mesacanthus (an acanthodiform), Parexus (a "climatiiform"), and Ischnacanthus (an ischnacanthiform) Mesacanthus Parexus Ischnacanthus.JPG
Three acanthodians from the Early Devonian of Great Britain: Mesacanthus (an acanthodiform), Parexus (a "climatiiform"), and Ischnacanthus (an ischnacanthiform)
Impression fossil of the diplacanthid Rhadinacanthus longispinus, at the Museum fur Naturkunde, Berlin Diplacanthus.jpg
Impression fossil of the diplacanthid Rhadinacanthus longispinus, at the Museum für Naturkunde, Berlin
Various acanthodians, from top left clockwise: Cheiracanthus, Acanthodes, Climatius, Ischnacanthus, Parexus, Gyracanthus. center: Diplacanthus. Acanthodi NT.jpg
Various acanthodians, from top left clockwise: Cheiracanthus , Acanthodes , Climatius , Ischnacanthus , Parexus , Gyracanthus . center: Diplacanthus .

The scales of Acanthodii have distinctive ornamentation peculiar to each order. Because of this, the scales are often used in determining relative age of sedimentary rock. The scales are tiny, with a bulbous base, a neck, and a flat or slightly curved diamond-shaped crown.

Despite being called "spiny sharks", acanthodians predate sharks. Scales that have been tentatively identified as belonging to acanthodians, or "shark-like fishes" have been found in various Ordovician strata, though, they are ambiguous, and may actually belong to jawless fishes such as thelodonts. The earliest unequivocal acanthodian fossils date from the beginning of the Silurian Period, some 50 million years before the first sharks appeared. Later, the acanthodians colonized fresh waters, and thrived in the rivers and lakes during the Devonian and in the coal swamps of Carboniferous. By this time bony fishes were already showing their potential to dominate the waters of the world, and their competition proved too much for the spiny sharks, which died out in Permian times (approximately 250 million years ago).

Many palaeontologists originally considered the acanthodians close to the ancestors of the bony fishes.[ citation needed ] Although their interior skeletons were made of cartilage, a bonelike material had developed in the skins of these fishes, in the form of closely fitting scales (see above)[ clarification needed ]. Some scales were greatly enlarged and formed a bony covering on top of the head and over the lower shoulder girdle [ citation needed ]. Others developed a bony flap over the gill openings analogous to the operculum in later bony fishes[ citation needed ]. However, most of these characteristics are considered homologous characteristics derived from common placoderm ancestors[ clarification needed ], and present also in basal cartilaginous fish [ citation needed ]. Overall, the acanthodians' jaws are presumed to have evolved from the first gill arch of some ancestral jawless fishes that had a gill skeleton made of pieces of jointed cartilage.[ citation needed ]

Taxonomy and phylogeny

In a study of early jawed vertebrate relationships, Davis et al. (2012) found acanthodians to be split among the two major clades Osteichthyes (bony fish) and Chondrichthyes (cartilaginous fish). The well-known acanthodian Acanthodes was placed within Osteichthyes, despite the presence of many chondrichthyan characteristics in its braincase. [3] However, a newly described Silurian placoderm, Entelognathus , which has jaw anatomy shared with bony fish and tetrapods, has led to revisions of this phylogeny: acanthodians were then considered to be a paraphyletic assemblage leading to cartilaginous fish, while bony fish evolved from placoderm ancestors. [4]

Burrow et al. 2016 provides vindication by finding chondrichthyans to be nested among Acanthodii, most closely related to Doliodus and Tamiobatis . [2] A 2017 study of Doliodus morphology points out that it appears to display a mosaic of shark and acanthodian features, making it a transitional fossil and further reinforcing this idea. [5]

Phylogeny after [6]

Galeaspida

Osteostraci

"Placodermi"

Osteichthyes

Total-group  Chondrichthyes

Tetanopsyrus

Nerepisacanthus

Ischnacanthus

Poracanthodes

Culmacanthus

Uraniacanthus

Diplacanthus

Rhadinacanthus

Cassidiceps

Mesacanthus

Lodeacanthus

Triazeugacanthus

Promesacanthus

Acanthodes

Cheiracanthus

Homalacanthus

Euthacanthus

Ptomacanthus

Brachyacanthus

Climatius

Parexus

Vernicomacanthus

Lupopsyrus

Obtusacanthus

Kathemacanthus

Brochoadmones

Gyracanthides

Chondrichthyes (conventionally defined)

"Acanthodii"

Evolutionary history

The oldest remains attributed acanthodian-grade chondrichthyans are Fanjingshania and Qianodus from the Early Silurian of China, dating to around 439 million years ago. [7] [8] Compared to other contemporary groups of fish, acanthodians were relatively morphologically and ecologically conservative. Acanthodians rose in diversity during the Late Silurian, reaching their apex of diversity during the Lochkovian stage of the Early Devonian, declining during the Pragian but rising again during the following Emsian, which was followed by a decline in diversity during middle-Late Devonian. The diversity of the group was consistently low but stable during the Carboniferous, slightly decreasing going into the Permian. [9] The youngest records of the group are isolated scales and fin spines from Middle-Late Permian strata in the Paraná Basin of Brazil. [10]

Related Research Articles

<span class="mw-page-title-main">Chondrichthyes</span> Class of jawed cartilaginous fishes

Chondrichthyes is a class of jawed fish that contains the cartilaginous fish or chondrichthyians, which all have skeletons primarily composed of cartilage. They can be contrasted with the Osteichthyes or bony fish, which have skeletons primarily composed of bone tissue. Chondrichthyes are aquatic vertebrates with paired fins, paired nares, placoid scales, conus arteriosus in the heart, and a lack of opecula and swim bladders. Within the infraphylum Gnathostomata, cartilaginous fishes are distinct from all other jawed vertebrates.

<span class="mw-page-title-main">Gnathostomata</span> Infraphylum of vertebrates

Gnathostomata are the jawed vertebrates. Gnathostome diversity comprises roughly 60,000 species, which accounts for 99% of all living vertebrates, including humans. In addition to opposing jaws, living gnathostomes have true teeth, paired appendages, the elastomeric protein of elastin, and a horizontal semicircular canal of the inner ear, along with physiological and cellular anatomical characters such as the myelin sheaths of neurons, and an adaptive immune system that has the discrete lymphoid organs of spleen and thymus, and uses V(D)J recombination to create antigen recognition sites, rather than using genetic recombination in the variable lymphocyte receptor gene.

<span class="mw-page-title-main">Sarcopterygii</span> Class of fishes

Sarcopterygii — sometimes considered synonymous with Crossopterygii — is a taxon of the bony fish known as the lobe-finned fish or sarcopterygians, characterised by prominent muscular limb buds (lobes) within the fins, which are supported by articulated appendicular skeletons. This is in contrast to the other clade of bony fish, the Actinopterygii, which have only skin-covered bony spines (lepidotrichia) supporting the fins.

<span class="mw-page-title-main">Placodermi</span> Class of fishes (fossil)

Placodermi is a class of armoured prehistoric fish, known from fossils, which lived from the Silurian to the end of the Devonian period. Their head and thorax were covered by articulated armoured plates and the rest of the body was scaled or naked, depending on the species. Placoderms were among the first jawed fish; their jaws likely evolved from the first of their gill arches.

<span class="mw-page-title-main">Teleostomi</span> Clade of jawed vertebrates

Teleostomi is an obsolete clade of jawed vertebrates that supposedly includes the tetrapods, bony fish, and the wholly extinct acanthodian fish. Key characters of this group include an operculum and a single pair of respiratory openings, features which were lost or modified in some later representatives. The teleostomes include all jawed vertebrates except the chondrichthyans and the extinct class Placodermi.

The Climatiiformes is an order of extinct fish belonging to the class Acanthodii. Like most other "spiny sharks", the Climatiiformes had sharp spines. These animals were often fairly small in size and lived from the Late Silurian to the Early Carboniferous period. The type genus is Climatius. The order used to be subdivided into the suborders Climatiida and Diplacanthida, but subsequently Diplacanthida has been elevated to a separate order, the Diplacanthiformes. The Diplacanthiformes take their name from Diplacanthus, first described by Agassiz in 1843. Family Gyracanthidae is sometimes rejected from this order.

<i>Psarolepis</i> Extinct genus of fishes

Psarolepis is a genus of extinct bony fish which lived around 397 to 418 million years ago. Fossils of Psarolepis have been found mainly in South China and described by paleontologist Xiaobo Yu in 1998. It is not known certainly in which group Psarolepis belongs, but paleontologists agree that it probably is a basal genus and seems to be close to the common ancestor of lobe-finned and ray-finned fishes. In 2001, paleontologist John A. Long compared Psarolepis with onychodontiform fishes and refer to their relationships.

<i>Ischnacanthus</i> Extinct genus of cartilaginous fishes

Ischnacanthus is an extinct genus of jawed fish in the class Acanthodii. It lived during Pridoli to Lochkovian, type species I. gracilis is only known from Lochkovian.

Guiyu oneiros is one of the earliest articulated bony fish discovered. Fossils of Guiyu have been found in what is now Qujing, Yunnan, China, in late Silurian marine strata, about 425 million years old.

<span class="mw-page-title-main">Fish jaw</span>

Most bony fishes have two sets of jaws made mainly of bone. The primary oral jaws open and close the mouth, and a second set of pharyngeal jaws are positioned at the back of the throat. The oral jaws are used to capture and manipulate prey by biting and crushing. The pharyngeal jaws, so-called because they are positioned within the pharynx, are used to further process the food and move it from the mouth to the stomach.

<span class="mw-page-title-main">Evolution of fish</span> Origin and diversification of fish through geologic time

The evolution of fish began about 530 million years ago during the Cambrian explosion. It was during this time that the early chordates developed the skull and the vertebral column, leading to the first craniates and vertebrates. The first fish lineages belong to the Agnatha, or jawless fish. Early examples include Haikouichthys. During the late Cambrian, eel-like jawless fish called the conodonts, and small mostly armoured fish known as ostracoderms, first appeared. Most jawless fish are now extinct; but the extant lampreys may approximate ancient pre-jawed fish. Lampreys belong to the Cyclostomata, which includes the extant hagfish, and this group may have split early on from other agnathans.

<i>Brochoadmones</i> Extinct genus of cartilaginous fishes

Brochoadmones is an extinct genus of acanthodian from the Devonian of what is now Canada. It is the only genus in the suborder Brochoadmonoidei, whose relationship to other acanthodian orders remains currently in flux.

<i>Entelognathus</i> Placoderm fish from the late Ludlow epoch of the Silurian period

Entelognathus primordialis is an early placoderm from the late Silurian of Qujing, Yunnan, 419 million years ago.

<i>Qilinyu</i> Extinct genus of fishes

Qilinyu is a genus of early placoderm from the late Silurian of China. It contains a single species, Qilinyu rostrata, from the Xiaoxiang fauna of the Kuanti Formation. Along with its contemporary Entelognathus, Qilinyu is an unusual placoderm showing some traits more similar to bony fish, such as dermal jaw bones and lobe-like fins. It can be characterized by adaptations for a benthic lifestyle, with the mouth and nostrils on the underside of the head, similar to the unrelated antiarch placoderms. The shape of the skull has been described as "dolphin-like", with a domed cranium and a short projecting rostrum.

This list of fossil fishes described in 2017 is a list of new taxa of jawless vertebrates, placoderms, acanthodians, fossil cartilaginous fishes, bony fishes and other fishes of every kind that are scheduled to be described during the year 2017, as well as other significant discoveries and events related to paleontology of fishes that are scheduled to occur in the year 2017. The list only includes taxa at the level of genus or species.

<i>Ptomacanthus</i> Extinct genus of cartilaginous fishes

Ptomacanthus is an extinct genus of spiny shark, an early relative of living cartilaginous fishes.

<i>Bianchengichthys</i> Extinct genus of maxillate placoderm fish

Bianchengichthys is a genus of maxillate placoderm fish from the late Silurian Period. Its fossils have been recovered from Yunnan Province, China, and it is represented by only one species: Bianchengichthys micros.

<i>Qianodus</i> Extinct Silurian chondrichthyan genus

Qianodus is a jawed vertebrate genus that is based on disarticulated teeth from the lower Silurian of China. The type and only species of Qianodus, Q. duplicis, is known from compound dental elements called tooth whorls, each consisting of multiple tooth generations carried by a spiral-shaped base. The tooth whorls of Qianodus represent the oldest unequivocal remains of a toothed vertebrate, predating previously recorded occurrences by about 14 million years. The specimens attributed to the genus come from limestone conglomerate beds of the Rongxi Formation exposed near the village of Leijiatun, Guizhou Province, China. These horizons have been interpreted as tidal deposits1 that form part of the shallow marine sequences of the Rongxi Formation.

<i>Fanjingshania</i> Extinct genus of cartilaginous fishes

Fanjingshania is an extinct genus of acanthodian from the lower Silurian of China around 439 million years old, making it currently the oldest known acanthodian. It comprises a single species, Fanjingshania renovata which is known from over 1,000 isolated elements, including fin spines, branchiostegal plates, sclerotic plates, trunk scales, and tectal and postorbital tesserae. No teeth were ascribed to the taxon, but in the same horizon the tooth taxon Qianodus was found, and these taxa may be synonymous. In a phylogenetic analysis accompanying the description, it was placed in a clade with Climatius, Parexus, and Ptomacanthus.

References

  1. Zhu, Min; Yu, Xiaobo; Ahlberg, Per Erik; Choo, Brian; Lu, Jing; Qiao, Tuo; Qu, Qingming; Zhao, Wenjin; Jia, Liantao; Blom, Henning; Zhu, You'an (2013). "A Silurian placoderm with osteichthyan-like marginal jaw bones". Nature. 502 (7470): 188–193. Bibcode:2013Natur.502..188Z. doi:10.1038/nature12617. PMID   24067611. S2CID   4462506.
  2. 1 2 Burrow, C.; Blaauwen, J.D.; Newman, M.; Davidson, R. (2016). "The diplacanthid fishes (Acanthodii, Diplacanthiformes, Diplacanthidae) from the Middle Devonian of Scotland". Palaeontologia Electronica. 19 (1): 10A. doi: 10.26879/601 .
  3. Davis, S. P.; Finarelli, J. A.; Coates, M. I. (2012). "Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes". Nature. 486 (7402): 247–50. Bibcode:2012Natur.486..247D. doi:10.1038/nature11080. PMID   22699617. S2CID   4304310.
  4. Barford, Eliot (September 25, 2013). "Ancient fish face shows roots of modern jaw". Nature. doi:10.1038/nature.2013.13823. S2CID   87470088.
  5. Maisey, John G.; Miller, Randall F.; Pradel, Alan S.; Denton, John S.; Bronson, Allison; Philippe, Janvier (2017-03-10). Pectoral morphology in Doliodus : bridging the 'acanthodian'-chondrichthyan divide. American Museum Novitates. Vol. 3875). hdl:2246/6701.
  6. Chevrinais, Marion; Sire, Jean-Yves; Cloutier, Richard (2017-04-12). Beatty, Brian Lee (ed.). "From body scale ontogeny to species ontogeny: Histological and morphological assessment of the Late Devonian acanthodian Triazeugacanthus affinis from Miguasha, Canada". PLOS ONE. 12 (4): e0174655. doi: 10.1371/journal.pone.0174655 . ISSN   1932-6203. PMC   5389634 . PMID   28403168.
  7. Andreev, Plamen S.; Sansom, Ivan J.; Li, Qiang; Zhao, Wenjin; Wang, Jianhua; Wang, Chun-Chieh; Peng, Lijian; Jia, Liantao; Qiao, Tuo; Zhu, Min (September 2022). "Spiny chondrichthyan from the lower Silurian of South China". Nature. 609 (7929): 969–974. doi:10.1038/s41586-022-05233-8. PMID   36171377. S2CID   252570103.
  8. Andreev, Plamen S.; Sansom, Ivan J.; Li, Qiang; Zhao, Wenjin; Wang, Jianhua; Wang, Chun-Chieh; Peng, Lijian; Jia, Liantao; Qiao, Tuo; Zhu, Min (2022-09-28). "The oldest gnathostome teeth". Nature. 609 (7929): 964–968. Bibcode:2022Natur.609..964A. doi:10.1038/s41586-022-05166-2. ISSN   0028-0836. PMID   36171375. S2CID   252569771.
  9. Schnetz, Lisa; Butler, Richard J.; Coates, Michael I.; Sansom, Ivan J. (July 2022). Sansom, Robert (ed.). "Skeletal and soft tissue completeness of the acanthodian fossil record". Palaeontology. 65 (4). doi: 10.1111/pala.12616 . ISSN   0031-0239. S2CID   250629392.
  10. Mutter, Raoul J.; Richter, Martha (April 2007). "Acanthodian remains from the Middle-Late Permian of Brazil". Geological Journal. 42 (2): 213–224. doi:10.1002/gj.1081. S2CID   129538432.

Further reading