Cetoniacytone A

Last updated
Cetoniacytone A
Cetoniacytone A.gif
Names
IUPAC name
N-[(1R,2S,6R)-2-hydroxy-6-(hydroxymethyl)-5-oxo-7-oxabicyclo[4.1.0]hept-3-en-3-yl]acetamide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
PubChem CID
  • InChI=1S/C9H11NO5/c1-4(12)10-5-2-6(13)9(3-11)8(15-9)7(5)14/h2,7-8,11,14H,3H2,1H3,(H,10,12)/t7-,8+,9-/m0/s1
    Key: JYYJQJKNUQRQSW-YIZRAAEISA-N
  • CC(=O)NC1=CC(=O)[C@]2([C@@H]([C@H]1O)O2)CO
Properties
C9H11NO5
Molar mass 213.189 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cetoniacytone A is a secondary metabolite classified in the family of C7N aminocyclitols which include other natural products such as validamycin A, acarbose, and epoxyquinomicin. [1] Cetoniacytone A was first identified from a culture of Actinomyces sp. (strain Lu 9419), an endosymbiotic Gram-positive bacillus found in the intestines of a rose chafer ( Cetonia aureata ). [2] Preliminary feeding studies with [U-13C3]glycerol identified the core moiety, cetoniacytone, to be derived via the pentose phosphate pathway. Although agar plate diffusion assay studies of cetoniacytone A showed no antimicrobial activity against Gram-positive and Gram-negative bacteria, cetoniacytone A has demonstrated a significant growth inhibitory effect against human cancer cell lines including hepatocellular carcinoma (HEP G2) and breast adenocarcinoma (MCF 7). [2] [3]

Biosynthesis

Feeding experiments conducted by Zeeck and co-workers established the synthesis of Cetoniacytone A to proceed via the pentose phosphate pathway with sedoheptulose-7- phosphate as the key intermediate. [2] Sedoheptulose-7- phosphate first undergoes a cyclization catalyzed by 2-epi-5-epi-valiolone synthase (CetA) yielding 2-epi-5-epi-valiolone. Following the cyclization, 2-epi-5-epi-valiolone epimerase (CetB) results in an inversion of the stereochemistry of the alcohol alpha to the ketone forming 5-epi-valiolone. Next, CetL, a type of oxidoreductase, results in the oxidation of the C-4 hydroxyl group to give 2-keto-5-epi-valiolone followed by a transamination catalyzed by aminotransferases CetM to give 2-amino-5-epi-valiolone. The sequential reactions depicted in the dashed box represent putative pathways that involve oxidoreductase, dehydrogenase, and hypothetical proteins related to the cupin superfamily to yield cetoniacytone B. Lastly, cetoniacytone B is acetylated via an arylamine N-acetyltransferase (CetD) to yield cetoniacytone A. [3]

Figure 1. Biosynthesis of Cetoniacytone A from the Endosymbiotic Bacterium Actinomyces sp. Lu 9419. Cetoniacytone A Biosynthesis.gif
Figure 1. Biosynthesis of Cetoniacytone A from the Endosymbiotic Bacterium Actinomyces sp. Lu 9419.

Related Research Articles

A tetrose is a monosaccharide with 4 carbon atoms. They have either an aldehyde functional group in position 1 (aldotetroses) or a ketone functional group in position 2 (ketotetroses).

<span class="mw-page-title-main">Calvin cycle</span> Light-independent reactions in photosynthesis

The Calvin cycle,light-independent reactions, bio synthetic phase,dark reactions, or photosynthetic carbon reduction (PCR) cycle of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into glucose. The Calvin cycle is present in all photosynthetic eukaryotes and also many photosynthetic bacteria. In plants, these reactions occur in the stroma, the fluid-filled region of a chloroplast outside the thylakoid membranes. These reactions take the products of light-dependent reactions and perform further chemical processes on them. The Calvin cycle uses the chemical energy of ATP and reducing power of NADPH from the light dependent reactions to produce sugars for the plant to use. These substrates are used in a series of reduction-oxidation reactions to produce sugars in a step-wise process; there is no direct reaction that converts several molecules of CO2 to a sugar. There are three phases to the light-independent reactions, collectively called the Calvin cycle: carboxylation, reduction reactions, and ribulose 1,5-bisphosphate (RuBP) regeneration.

A heptose is a monosaccharide with seven carbon atoms.

<span class="mw-page-title-main">Transketolase</span> Enzyme involved in metabolic pathways

Transketolase is an enzyme that, in humans, is encoded by the TKT gene. It participates in both the pentose phosphate pathway in all organisms and the Calvin cycle of photosynthesis. Transketolase catalyzes two important reactions, which operate in opposite directions in these two pathways. In the first reaction of the non-oxidative pentose phosphate pathway, the cofactor thiamine diphosphate accepts a 2-carbon fragment from a 5-carbon ketose (D-xylulose-5-P), then transfers this fragment to a 5-carbon aldose (D-ribose-5-P) to form a 7-carbon ketose (sedoheptulose-7-P). The abstraction of two carbons from D-xylulose-5-P yields the 3-carbon aldose glyceraldehyde-3-P. In the Calvin cycle, transketolase catalyzes the reverse reaction, the conversion of sedoheptulose-7-P and glyceraldehyde-3-P to pentoses, the aldose D-ribose-5-P and the ketose D-xylulose-5-P.

<span class="mw-page-title-main">Lincomycin</span> Chemical compound

Lincomycin is a lincosamide antibiotic that comes from the actinomycete Streptomyces lincolnensis. A related compound, clindamycin, is derived from lincomycin by using thionyl chloride to replace the 7-hydroxy group with a chlorine atom with inversion of chirality. It was released for medical use in September 1964.

<span class="mw-page-title-main">Transaldolase</span> Enzyme family

Transaldolase is an enzyme of the non-oxidative phase of the pentose phosphate pathway. In humans, transaldolase is encoded by the TALDO1 gene.

<span class="mw-page-title-main">L-xylulose reductase</span> Enzyme

Dicarbonyl/L-xylulose reductase, also known as carbonyl reductase II, is an enzyme that in human is encoded by the DCXR gene located on chromosome 17.

Glucose-1,6-bisphosphate synthase is a type of enzyme called a phosphotransferase and is involved in mammalian starch and sucrose metabolism. It catalyzes the transfer of a phosphate group from 1,3-bisphosphoglycerate to glucose-1-phosphate, yielding 3-phosphoglycerate and glucose-1,6-bisphosphate.

<span class="mw-page-title-main">Xylose metabolism</span>

D-Xylose is a five-carbon aldose that can be catabolized or metabolized into useful products by a variety of organisms.

<span class="mw-page-title-main">D-xylulose reductase</span>

In enzymology, a D-xylulose reductase (EC 1.1.1.9) is an enzyme that catalyzes the chemical reaction

In enzymology, a glycerol-3-phosphate 1-dehydrogenase (NADP+) (EC 1.1.1.177) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Phosphogluconate dehydrogenase (decarboxylating)</span>

In enzymology, a phosphogluconate dehydrogenase (decarboxylating) (EC 1.1.1.44) is an enzyme that catalyzes the chemical reaction

In enzymology, a hexose oxidase (EC 1.1.3.5) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Pyranose oxidase</span>

In enzymology, a pyranose oxidase (EC 1.1.3.10) is an enzyme that catalyzes the chemical reaction

In enzymology, a quinoprotein glucose dehydrogenase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Ribose-5-phosphate isomerase</span>

Ribose-5-phosphate isomerase (Rpi) encoded by the RPIA gene is an enzyme that catalyzes the conversion between ribose-5-phosphate (R5P) and ribulose-5-phosphate (Ru5P). It is a member of a larger class of isomerases which catalyze the interconversion of chemical isomers. It plays a vital role in biochemical metabolism in both the pentose phosphate pathway and the Calvin cycle. The systematic name of this enzyme class is D-ribose-5-phosphate aldose-ketose-isomerase.

The enzyme phosphoketolase(EC 4.1.2.9) catalyzes the chemical reactions

<span class="mw-page-title-main">Ribulokinase</span>

In enzymology, a ribulokinase is an enzyme that catalyzes the chemical reaction

The aminocyclitols are compounds related to cyclitols. They possess features of relative and absolute configuration that are characteristic of their class and have been extensively studied; but these features are not clearly displayed by general methods of stereochemical nomenclature, so that special methods of specifying their configuration are justified and have long been used. In other than stereochemical respects, their nomenclature should follow the general rules of organic chemistry.

<span class="mw-page-title-main">Farinamycin</span> Chemical compound

Farinamycin is a quinazoline metabolite that has been isolated from Streptomyces griseus. It is the first known metabolite to be produced by S. griseus that is not a phenoxazinone antibiotic. Farinamycin is formed from the condensation of 3-OH-anthranalite and 3,4-AHBA building blocks that later combine with Enaminomycin C biosynthetically. Many Streptomyces natural products have been used as antibiotics, antifungals, anticancer agents and immunosuppressive agents.

References

  1. Mahmud, Taifo (2003). "The C7N aminocyclitol family of natural products". Natural Product Reports. 20 (2): 137–166. doi:10.1039/B205561A. PMID   12636088.
  2. 1 2 3 4 Schlorke O, Krastel P, Muller I, Uson I, Dettner K, and Zeeck A (2002). "Structure and Biosynthesis of Cetoniacytone A, a Cytotoxic Aminocarba Sugar Produced by an Endosymbiontic Actinomyces". Journal of Antibiotics. 55 (7): 635–642. doi: 10.7164/antibiotics.55.635 . PMID   12243453.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. 1 2 Wu X, Flatt M, Xu H, and Mahmud T (2009). "Biosynthetic Gene Cluster of Cetoniacytone A, an Unusual Aminocyclitol from the Endosymbiotic Bacterium Actinomyces sp. Lu 9419". ChemBioChem. 10 (2): 304–314. doi:10.1002/cbic.200800527. PMC   3136446 . PMID   19101977.{{cite journal}}: CS1 maint: multiple names: authors list (link)