Cirsium arvense

Last updated

Contents

Cirsium arvense
Cirsium arvense with Bees Richard Bartz.jpg
Status TNC G5.svg
Secure  (NatureServe)
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Clade: Asterids
Order: Asterales
Family: Asteraceae
Genus: Cirsium
Species:
C. arvense
Binomial name
Cirsium arvense
Synonyms [1]
Synonymy
  • Breea arvensis(L.) Less.
  • Breea dioica(Cass.) Less.
  • Breea ochrolepidia(Juz.) Soják
  • Breea praealtaLess.
  • Breea setosa(Willd.) Soják
  • Carduus arvensis(L.) Robson
  • Carduus haemorrhoidalisAuct. ex DC.
  • Carduus neglectusSteud.
  • Carduus segetum(Bunge) Franch.
  • Carduus serratuloidesNeck.
  • Carduus setosusBab.
  • Cephalonoplos arvense(L.) Fourr.
  • Cephalonoplos arvensis(L.) Fourr.
  • Cephalonoplos ochrolepidium(Juz.) Juz.
  • Cephalonoplos segetum(Bunge) Kitam.
  • Cephalonoplos setosus(Ledeb.) Kitam.
  • Cirsium albicansWillk.
  • Cirsium albiflorum(Kitag.) Kitag.
  • Cirsium argenteumPeyer ex Vest
  • Cirsium argunenseDC.
  • Cirsium celakovskianumKnaf
  • Cirsium dioicumCass.
  • Cirsium halophilumTurcz. ex Herder
  • Cirsium horridum(Wimm. & Grab.) Stankov
  • Cirsium incanum(S.G.Gmel.) Fisch. ex M.Bieb.
  • Cirsium laevigatumTausch
  • Cirsium macrostylon(Moretti) Rchb.
  • Cirsium mutatumMenyh.
  • Cirsium neglectumFisch. ex Spreng.
  • Cirsium ochrolepidiumJuz.
  • Cirsium praealtumCass.
  • Cirsium ruthenicumFisch.
  • Cirsium setosum(Willd.) Besser ex M.Bieb.
  • Cirsium sordidumWallr.
  • Cirsium stocksiiBoiss.
  • Cnicus arvensis(L.) Hoffm.
  • Cnicus lanatusWilld.
  • Cnicus macrostylusMoretti
  • Cnicus neglectusParish ex Greene
  • Cnicus ruthenicusJ.Henning
  • Cnicus setosus(Willd.) Besser
  • Cynara repensStokes
  • Serratula arvensisL.
  • Serratula incanaS.G.Gmel.
  • Serratula setosaWilld.

Cirsium arvense is a perennial species of flowering plant in the family Asteraceae, native throughout Europe and western Asia, northern Africa and widely introduced elsewhere. [2] [3] [4] [5] The standard English name in its native area is creeping thistle. [6] It is also commonly known as Canada thistle and field thistle. [7] [8]

The plant is beneficial for pollinators that rely on nectar. It also was a top producer of nectar sugar in a 2016 study in Britain, with a second-place ranking due to a production per floral unit of (2609±239 μg). [9]

Alternative names

A number of other names are used in other areas or have been used in the past, including: Canadian thistle, lettuce from hell thistle, California thistle, [10] corn thistle, cursed thistle, field thistle, green thistle, hard thistle, perennial thistle, prickly thistle, setose thistle, small-flowered thistle, way thistle, and stinger-needles. Canada and Canadian thistle are in wide use in the United States, despite being a misleading designation (it is not of Canadian origin). [11]

Description

Flowering creeping thistle Cirsium arvense - poldohakas.jpg
Flowering creeping thistle

Cirsium arvense is a C3 carbon fixation plant. [12] The C3 plants originated during Mesozoic and Paleozoic eras, and tend to thrive in areas where sunlight intensity is moderate, temperatures are moderate, and ground water is plentiful. C3 plants lose 97% of the water taken up through their roots to transpiration. [13]

Creeping thistle is a herbaceous perennial plant growing up to 150 cm, forming extensive clonal colonies from thickened roots that send up numerous erect shoots during the growing season. [14] It is a ruderal species. [15]

Given its adaptive nature, Cirsium arvense is one of the worst invasive weeds worldwide. Through comparison of its genetic expressions, the plant evolves differently with respect to where it has established itself. Differences can be seen in their R-protein mediated defenses, sensitivities to abiotic stresses, and developmental timing. [16]

Taxonomy

Cirsium arvense is placed in the subtribe Carduinae, tribe Cardueae of the family Asteraceae. Unlike other species in the same genus, it is dioecious, although male plants sometimes produce bisexual flowers. [17] It also differs from other native North American species in having large roots and multiple small flower heads on a branched stem. [18]

Underground network

Its underground structure consists of four types, 1) long, thick, horizontal roots, 2) long, thick, vertical roots, 3) short, fine shoots, and 4) vertical, underground stems. [19] Though asserted in some literature, creeping thistle does not form rhizomes. [20] Root buds form adventitiously on the thickened roots of creeping thistle, and give rise to new shoots. Shoots can also arise from the lateral buds on the underground portion of regular shoots, particularly if the shoots are cut off through mowing or when stem segments are buried. [20]

Shoots and leaves

Stems are 30–150 cm, slender green, and freely branched, [20] smooth and glabrous (having no trichomes or glaucousness), mostly without spiny wings. Leaves are alternate on the stem with their base sessile and clasping or shortly decurrent. The leaves are very spiny, lobed, and up to 15–20 cm long and 2–3 cm broad (smaller on the upper part of the flower stem).

Flower head fragrance

Meadow brown on creeping thistle Maniola jurtina 2 RF.jpg
Meadow brown on creeping thistle

Every plant species has a unique floral fragrance. [21] The fragrance that C. arvense emits attracts both pollinators and florivores containing compounds that attract each respectively. Non-native honeybees are shown to have the highest visitation rate, following other bee species in the genera Halictus and Lasioglossum. Hover flies are also commonly seen pollinating the flower heads of this plant. [22] Florivores such as beetles and grasshoppers are commonly seen as well. The compounds found in the fragrance may not be in the highest abundance but they are highly attractive. P-anisaldehyde is found in less than 1%, yet it attracts pollinators such as honey bees. [23] This is thought to be the result of additive and synergistic effects from the blend increasing the attraction to the plant. After pollination, it can be seen that fragrance emission decreases in C.arvense. This is regulated through a regulatory feedback mechanism depending on the pollination status of the plant. This mechanism has only been observed in pistillate plants for dioecious C. arvense. Fragrance emission increases with age. [24]

The fragrance contains several compounds that attract diverse insects. Looking at certain butterflies species, it can be seen that the fragrance blend is highly attractive to them, being sensitive to their antennae. High antennal response are seen in consequence to the phenylacetaldehyde as well as the terpenes (oxoisophoroneoxide, oxoisophorone, and dihydrooxoisophorone) found in the blend. This was seen in both natural plants emitting the fragrance and emitting the scent synthetically. [25] It is believed that general arousal can be stimulated through exposure of a single compound, whereas the accumulated exposure of all the compounds influence the foraging behaviour of the butterflies. [21]

Flowers and seeds

The inflorescence compound cyme is 10–22 mm (0.39–0.87 in) in diameter, pink-purple, with all the florets of similar form (no division into disc and ray florets). The flowers are usually dioecious, but not invariably so, with some plants bearing hermaphrodite flowers. [20] The seeds are 4–5 mm long, with a feathery pappus which assists in wind dispersal. [26] [27] [28] One to 5 flower heads occur per branch, with plants in very favourable conditions producing up to 100 heads per shoot. [14] Each head contains an average of 100 florets. Average seed production per plant has been estimated at 1530. More seeds are produced when male and female plants are closer together, as flowers are primarily insect-pollinated. [14] The plant can bloom from seed in a year then subsequently the seeds produced can emerge in the following year. [29]

Varieties

Variation in leaf characters (texture, vestiture, segmentation, spininess) is the basis for determining creeping thistle varieties. [14] According to Flora of Northwest Europe [26] the two varieties are:

The Biology of Canadian Weeds: Cirsium arvense [14] list four varieties:

Ecology

A European goldfinch (Carduelis carduelis) feeding on the seeds Carduelis carduelis2.jpg
A European goldfinch (Carduelis carduelis) feeding on the seeds

The seeds are an important food for the goldfinch and the linnet, and to a lesser extent for other finches. [30] Creeping thistle foliage is used as a food by over 20 species of Lepidoptera, including the painted lady butterfly and the engrailed moth, and several species of aphids. [31] [32] [33] The C. arvense species is also noted to be a food source for the Altica cirsicola beetle species. [34]

The flowers are visited by a wide variety of insects such as bees, moths, wasps and beetles [35] (the generalised pollination syndrome). [36]

Status as a weed

The species is widely considered a weed even where it is native, for example being designated an "injurious weed" in the United Kingdom under the Weeds Act 1959. [37] It is also a serious invasive species in many additional regions where it has been introduced, usually accidentally as a contaminant in cereal crop seeds. It is cited as a noxious weed in several countries; for example Australia, Brazil, Canada, Ireland, New Zealand, and the United States. Many countries regulate this plant, or its parts (i.e., seed) as a contaminant of other imported products such as grains for consumption or seeds for propagation. In Canada, C. arvense is classified as a primary noxious weed seed in the Weed Seeds Order 2005 which applies to Canada's Seeds Regulations. [38]

A study conducted has shown that with future global atmospheric carbon levels, C. arvense have a risk of increased growth which could expand its range and outcompete native species. [39]

Control

Organic

Control methods include cutting at flower stem extension before the flower buds open to prevent seed spread. Repeated cutting at the same growth stage over several years may "wear down" the plant.

Growing forages such as alfalfa can help control the species as a weed by frequently cutting the alfalfa to add nutrients to the soil, the weeds also get cut, and have a harder time re-establishing themselves, which reduces the shoot density. [40]

Orellia ruficauda feeds on Canada thistle and has been reported to be the most effective biological control agent for that plant. [41] Its larvae parasitize the seed heads, feeding solely upon fertile seed heads. [42]

The weevil Larinus planus also feeds on the thistle and has been used as a control agent in Canada. [43] One larva of the species can consume up to 95% of seeds in a particular flower bud. [44] However, use of this weevil has had a damaging effect on other thistle species as well, include some that are threatened. [45] It may therefore not be a desirable control agent. It is unclear if the government continues to use this weevil to control Canada thistles or not.

The rust species Puccinia obtegens has shown some promise for controlling Canada thistle, but it must be used in conjunction with other control measures to be effective. [46] Also Puccinia punctiformis is used in North America and New Zealand in biological control. [47] In 2013, in four countries in three continents, epidemics of systemic disease caused by this rust fungus could be routinely and easily established. [48] The procedure for establishing this control agent involves three simple steps and is a long-term sustainable control solution that is free and does not involve herbicides. Plants systemically diseased with the rust gradually but surely die. Reductions in thistle density were estimated, in 10 sites in the U.S., Greece, and Russia, to average 43%, 64%, and 81% by 18, 30, and 42 months, respectively, after a single application of spores of the fungus. [49]

Electron scan micrography of Aceria anthocoptes Rust Mite, Aceria anthocoptes.jpg
Electron scan micrography of Aceria anthocoptes

Aceria anthocoptes feeds on this species and is considered to be a good potential biological control agent.

Chemical

Applying herbicide: Herbicides dominated by phenoxy compounds (especially MCPA) caused drastic declines in thistle infestation in Sweden in the 1950s. [12] MCPA and clopyralid are approved in some regions. Glyphosate is a non-selective herbicide that can be used when the plant has grown a few inches tall, where the herbicide can be absorbed by the leaf surfaces. [29]

Crop tolerance and weed control ratings were conducted in the spring of 2012, and the Prepass herbicide by DOW AgroSciences was found to be most effective at controlling the species as a weed problem in alfalfa fields. [50]

Uses

Like other Cirsium species, the roots are edible, though rarely used, not in the least because of their propensity to induce flatulence in some people. The taproot is considered the most nutritious part.[ citation needed ] The leaves are also edible, though the spines make their preparation for food too tedious to be worthwhile. The stalks, however, are also edible and more easily despined. [51] Bruichladdich distillery on Isle of Islay lists creeping thistle as one of the 22 botanical forages used in their gin, The Botanist. [52]

The feathery pappus is also used by the Cherokee to fletch blowgun darts. [53]

Related Research Articles

<span class="mw-page-title-main">Weed control</span> Botanical component of pest control for plants

Weed control is a type of pest control, which attempts to stop or reduce growth of weeds, especially noxious weeds, with the aim of reducing their competition with desired flora and fauna including domesticated plants and livestock, and in natural settings preventing non native species competing with native species.

<span class="mw-page-title-main">Clopyralid</span> Chemical compound

Clopyralid is a selective herbicide used for control of broadleaf weeds, especially thistles and clovers. Clopyralid is in the picolinic acid family of herbicides, which also includes aminopyralid, picloram, triclopyr, and several less common herbicides. For control of creeping thistle, Cirsium arvense, a noxious, perennial weed, clopyralid is one of the few effective herbicides available. It is particularly damaging to peas, tomatoes, and sunflowers, and can render potatoes, lettuce, and spinach inedible. It does not affect grasses.

<i>Cirsium</i> Genus of flowering plants in the daisy family Asteraceae

Cirsium is a genus of perennial and biennial flowering plants in the Asteraceae, one of several genera known commonly as thistles. They are more precisely known as plume thistles. These differ from other thistle genera in having feathered hairs to their achenes. The other genera have a pappus of simple unbranched hairs.

<i>Carduus nutans</i> Species of flowering plant in the daisy family Asteraceae

Carduus nutans, with the common names musk thistle, nodding thistle, and nodding plumeless thistle, is a biennial plant in the daisy and sunflower family Asteraceae. It is native to regions of Europe, Central Asia, and North Africa, where it is a scattered pasture plant. The musk thistle has been declared as invasive in North America, Australia, New Zealand, and South Africa.

<i>Onopordum acanthium</i> Species of flowering plant in the daisy family Asteraceae

Onopordum acanthium is a flowering plant in the family Asteraceae. It is native to Europe and Western Asia from the Iberian Peninsula east to Kazakhstan, and north to central Scandinavia, and widely naturalised elsewhere, with especially large populations present in the United States and Australia. It is a vigorous biennial plant with coarse, spiny leaves and conspicuous spiny-winged stems.

<i>Glechoma hederacea</i> Species of flowering plants in the mint and sage family Lamiaceae

Glechoma hederacea is an aromatic, perennial, evergreen creeper of the mint family Lamiaceae. It is commonly known as ground-ivy, gill-over-the-ground, creeping charlie, alehoof, tunhoof, catsfoot, field balm, and run-away-robin. It is also sometimes known as creeping jenny, but that name more commonly refers to Lysimachia nummularia. It is used as a salad green in many countries. European settlers carried it around the world, and it has become a well-established introduced and naturalized plant in a wide variety of localities. It is also considered an aggressive invasive weed of woodlands and lawns in some parts of North America. In the absence of any biological control, research conducted by the USDA herbicides are relied upon particularly for woodland ecosystems. The plant's extensive root system makes it difficult to eradicate by hand-pulling.

<i>Cirsium vulgare</i> Species of flowering plant in the daisy family Asteraceae

Cirsium vulgare, the spear thistle, bull thistle, or common thistle, is a species of the Asteraceae genus Cirsium, native throughout most of Europe, Western Asia, and northwestern Africa. It is also naturalised in North America, Africa, and Australia and is an invasive weed in some areas. It is the national flower of Scotland.

<i>Cirsium palustre</i> Species of flowering plant in the daisy family Asteraceae

Cirsium palustre, the marsh thistle or European swamp thistle, is a herbaceous biennial flowering plant in the family Asteraceae.

<span class="mw-page-title-main">Thistle</span> Common name of a group of flowering plants

Thistle is the common name of a group of flowering plants characterised by leaves with sharp prickles on the margins, mostly in the family Asteraceae. Prickles can also occur all over the plant – on the stem and on the flat parts of the leaves. These prickles are an adaptation that protects the plant from being eaten by herbivores. Typically, an involucre with a clasping shape similar to a cup or urn subtends each of a thistle's flower heads. The typically feathery pappus of a ripe thistle flower is known as thistle-down.

<i>Centaurea solstitialis</i> Species of flowering plant

Centaurea solstitialis, the yellow star-thistle, is a species of thorny plant in the genus Centaurea, which is part of the family Asteraceae. A winter annual, it is native to the Mediterranean Basin region and invasive in many other places. It is also known as golden starthistle, yellow cockspur and St. Barnaby's thistle.

<span class="mw-page-title-main">Noxious weed</span> Harmful or invasive weed

A noxious weed, harmful weed or injurious weed is a weed that has been designated by an agricultural or other governing authority as a plant that is injurious to agricultural or horticultural crops, natural habitats or ecosystems, or humans or livestock. Most noxious weeds have been introduced into an ecosystem by ignorance, mismanagement, or accident. Some noxious weeds are native. Typically they are plants that grow aggressively, multiply quickly without natural controls, and display adverse effects through contact or ingestion. Noxious weeds are a large problem in many parts of the world, greatly affecting areas of agriculture, forest management, nature reserves, parks and other open space.

<i>Amaranthus tuberculatus</i> Species of flowering plant

Amaranthus tuberculatus, commonly known as roughfruit amaranth, rough-fruited water-hemp, tall waterhemp, or common waterhemp, is a species of flowering plant. It is a summer annual broadleaf with a germination period that lasts several months. Tall waterhemp has been reported as a weed in 40 of 50 U.S. states.

<i>Veronica serpyllifolia</i> Species of flowering plant in the family Plantaginaceae

Veronica serpyllifolia, the thyme-leaved speedwell or thymeleaf speedwell, is a perennial flowering plant in the plantain family. It is native to Europe, but can be found elsewhere on most continents as an introduced species.

<span class="mw-page-title-main">Weed</span> Plant considered undesirable in a particular place or situation

A weed is a plant considered undesirable in a particular situation, growing where it conflicts with human preferences, needs, or goals. Plants with characteristics that make them hazardous, aesthetically unappealing, difficult to control in managed environments, or otherwise unwanted in farm land, orchards, gardens, lawns, parks, recreational spaces, residential and industrial areas, may all be considered weeds. The concept of weeds is particularly significant in agriculture, where the presence of weeds in fields used to grow crops may cause major losses in yields. Invasive species, plants introduced to an environment where their presence negatively impacts the overall functioning and biodiversity of the ecosystem, may also sometimes be considered weeds.

<i>Cirsium undulatum</i> Species of thistle

Cirsium undulatum is a species of thistle known by the common names wavyleaf thistle and gray thistle. It is native to much of central and western North America from British Columbia east to Manitoba and south as far as the State of Durango in Mexico. It has also been found outside of its native range as an introduced species.

<i>Larinus planus</i> Species of beetle

Larinus planus is an insect of the Curculionidae family. They are oval shaped, dark brown or black, and about 5–10 millimetres long. While native to Europe, it is also common in North America. It feeds on floral buds, primarily of thistles, with the larvae stage being the most destructive to them. In North America, it has been used as a biocontrol agent. It is also known as Larinus carlinae.

<i>Aceria anthocoptes</i> Species of mite

Aceria anthocoptes, also known as the russet mite, rust mite, thistle mite or the Canada thistle mite, is a species of mite that belongs to the family Eriophyidae. It was first described by Alfred Nalepa in 1892.

<i>Linaria dalmatica</i> Species of flowering plant

Linaria dalmatica is a herbaceous, short-lived perennial plant native to western Asia and southeastern Europe that has become a weed in other areas. The family this plant now belongs to is the Plantaginaceae Family. Previously, it belonged to the Scrophulariaceae (Figwort) family. Its common names include Balkan toadflax, broadleaf toadflax, and Dalmatian toadflax. Linaria dalmatica has unique yellow flowers with an orange center that draw individuals to purchase them to display in their gardens. The distribution of L. dalmatica to North America can be attributed to use as a fabric dye, folk remedies and as an ornamental plant. However, it is now classified as a weed in both Canada and the U.S.A.

<span class="mw-page-title-main">Aminocyclopyrachlor</span> Chemical compound

Aminocyclopyrachlor is a selective, low-toxicity herbicide that provides pre- and post-emergent control of broadleaf weeds, woody species, vines and grasses on several non-food use sites, such as rights of way, wildlife management areas, recreational areas, turf/lawns, golf courses and sod farms. It was conditionally registered as Imprelis by DuPont in August 2010, and first used in Fall 2010. The chemical is a systemic herbicide and acts by disrupting gene expression. This causes undifferentiated cell division and elongation.

<i>Cirsium perplexans</i> Species of thistle

Cirsium perplexans is a species of flowering plant in the family Asteraceae known by the common names Rocky Mountain thistle and Adobe Hills thistle. It is endemic to Colorado in the United States, where it occurs in the Colorado and Gunnison River Valleys in the Rocky Mountains.

References

  1. The Plant List Cirsium arvense (L.) Scop.
  2. Hodgson, Jesse M. (1968). The Nature, Ecology, and Control of Canada Thistle. Agricultural Research Service, U.S. Dept. of Agriculture. p. 1.
  3. Joint Nature Conservation Committee: Cirsium arvense Archived 2009-08-11 at the Wayback Machine
  4. http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200023656 Flora of China, 丝路蓟 si lu ji, Cirsium arvense (Linnaeus) Scopoli]
  5. Altervista Flora Italiana, Cardo dei campi comune, Acker-Kratzdistel, åkertistel, Cirsium arvense (L.) Scop. includes photos and distribution maps
  6. Botanical Society of Britain and Ireland Database Archived 2007-08-08 at the Wayback Machine
  7. Flora of North America, Canada or creeping or field thistle, Chardon du Canada ou des champs, cirse des champs, Cirsium arvense (Linnaeus) Scopoli
  8. "Nebraska Department of Agriculture Noxious Weed Program" (PDF). Archived from the original (PDF) on 2022-01-19. Retrieved 2016-05-08.
  9. Hicks, DM; Ouvrard, P; Baldock, KCR (2016). "Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows". PLOS ONE. 11 (6): e0158117. Bibcode:2016PLoSO..1158117H. doi: 10.1371/journal.pone.0158117 . PMC   4920406 . PMID   27341588.
  10. Californian Thistle (Cirsium arvense), Landcare Research, New Zealand Archived May 23, 2010, at the Wayback Machine
  11. Invasive and Problem Plants of the United States: Cirsium arvense Archived 2008-07-05 at the Wayback Machine
  12. 1 2 Weeds and weed management on arable land: an ecological approach Sigurd Håkansson CABI Publishing Series, 2003, ISBN   0-85199-651-5
  13. Raven, J.A.; Edwards, D. (2001). "Roots: evolutionary origins and biogeochemical significance". Journal of Experimental Botany. 52 (90001): 381–401. doi: 10.1093/jexbot/52.suppl_1.381 . PMID   11326045.
  14. 1 2 3 4 5 MOORE, R. J. (1975-10-01). "THE BIOLOGY OF CANADIAN WEEDS.: 13. Cirsium arvense (L.) Scop". Canadian Journal of Plant Science. 55 (4): 1033–1048. doi:10.4141/cjps75-163. ISSN   0008-4220.
  15. p80 [ permanent dead link ]
  16. Guggisberg, Alessia; Lai, Zhao; Huang, Jie; Rieseberg, Loren H. (2013). "Transcriptome divergence between introduced and native populations of Canada thistle, Cirsium arvense". New Phytologist. 199 (2): 595–608. doi: 10.1111/nph.12258 . PMID   23586922.
  17. Lloyd, D. G.; Myall, A. J. (1976). "Sexual Dimorphism in Cirsium arvense (L.) Scop". Annals of Botany. 40: 115–123. doi:10.1093/oxfordjournals.aob.a085102.
  18. "Canada Thistle" . Retrieved 2022-05-01.
  19. Hamdoun, A. M. (1970-09-01). "The Anatomy of Subterranean Structures of Cirsium arvense (L.) Scop". Weed Research. 10 (3): 284–287. doi:10.1111/j.1365-3180.1970.tb00952.x. ISSN   1365-3180.
  20. 1 2 3 4 Donald, William (1994). "The Biology of Canada Thistle (Cirsium arvense)" (PDF). Weed Science. 6. Retrieved 2016-07-14.
  21. 1 2 Andersson, Susanna (2003-03-01). "Antennal responses to floral scents in the butterflies Inachis io , Aglais urticae (Nymphalidae), and Gonepteryx rhamni (Pieridae)". Chemoecology. 13 (1): 13–20. doi:10.1007/s000490300001. ISSN   0937-7409. S2CID   22444773.
  22. Theis, Nina Aileen. Targeting pollinators and evading herbivores : floral scent emission in two species of Cirsium. OCLC   57595495.
  23. Theis, Nina (May 2006). "Fragrance of Canada Thistle (Cirsium arvense) Attracts Both Floral Herbivores and Pollinators". Journal of Chemical Ecology. 32 (5): 917–927. doi:10.1007/s10886-006-9051-x. ISSN   0098-0331. PMID   16739013. S2CID   21222911.
  24. Theis, Nina; Raguso, Robert A. (2005-10-25). "The Effect Of Pollination On Floral Fragrance in Thistles". Journal of Chemical Ecology. 31 (11): 2581–2600. doi:10.1007/s10886-005-7615-9. ISSN   0098-0331. PMID   16273430. S2CID   5722787.
  25. Theis, Nina; Raguso, Robert A. (November 2005). "The effect of pollination on floral fragrance in thistles". Journal of Chemical Ecology. 31 (11): 2581–2600. doi:10.1007/s10886-005-7615-9. ISSN   0098-0331. PMID   16273430. S2CID   5722787.
  26. 1 2 Flora of Northwest Europe: Cirsium arvense Archived 2008-07-05 at the Wayback Machine
  27. Blamey, M. & Grey-Wilson, C. (1989). Flora of Britain and Northern Europe. ISBN   0-340-40170-2
  28. Kay, Q. O. N. (1985). Hermaphrodites and subhermaphrodites in a reputedly dioecious plant, Cirsium arvense (L.) Scop. New Phytol. 100: 457-472. Available online (pdf file).
  29. 1 2 "America's most weeded: Canada Thistle".
  30. Cramp, S., & Perrins, C. M. (1994). The Birds of the Western Palearctic. Vol. VIII: Crows to Finches. Oxford University Press, Oxford.
  31. Finnish Lepidoptera Cirsium arvense
  32. The Ecology of Commanster: Cirsium arvense Archived 2007-08-26 at the Wayback Machine
  33. Ecological Flora of the British Isles: Phytophagous Insects for Cirsium arvense
  34. Laroche, A.; DeClerck-Floate, R. A.; LeSage, L.; Floate, K. D.; Demeke, T. (1996-06-01). "AreAltica carduorumandAltica cirsicola(Coleoptera: Chrysomelidae) Different Species? Implications for the Release ofA. cirsicolafor the Biocontrol of Canada Thistle in Canada". Biological Control. 6 (3): 306–314. doi:10.1006/bcon.1996.0039. ISSN   1049-9644.
  35. El-Sayed, A. M.; Byers, J. A.; Manning, L. M.; Jürgens, A.; Mitchell, V. J.; Suckling, D. M. (June 2008). "Floral scent of Canada thistle and its potential as a generic insect attractant". Journal of Economic Entomology. 101 (3): 720–727. doi: 10.1603/0022-0493(2008)101[720:FSOCTA]2.0.CO;2 . ISSN   0022-0493. PMID   18613571. S2CID   14419740.
  36. Van Der Kooi, C. J.; Pen, I.; Staal, M.; Stavenga, D. G.; Elzenga, J. T. M. (2015). "Competition for pollinators and intra-communal spectral dissimilarity of flowers". Plant Biology. 18 (1): 56–62. doi:10.1111/plb.12328. PMID   25754608.
  37. DEFRA: Identification of injurious weeds Archived 2007-06-26 at the Wayback Machine
  38. Weed Seeds Order 2005 Archived 2012-03-21 at the Wayback Machine , Canada Gazette Part I, Vol. 139, No. 9
  39. Ziska, L. H. (2003-01-02). "Evaluation of the growth response of six invasive species to past, present and future atmospheric carbon dioxide". Journal of Experimental Botany. 54 (381): 395–404. doi:10.1093/jxb/erg027. ISSN   0022-0957.
  40. "Forages in Rotation" (PDF). Saskatchewan Soil Conservation Association. 2016. Archived from the original (PDF) on 2016-12-02. Retrieved 2016-12-01.
  41. Moore 1975, Maw 1976
  42. Lalonde
  43. Operational Field Guide to the Propagation and Establishment of the Bioagent Larinus Planus (PDF). Province of British Columbia, Ministry of Forests. May 2001. Archived from the original (PDF) on 2018-11-13. Retrieved 2019-01-30.
  44. "Larinus planus". Ministry of Forests, Lands, and Natural Resource Operations. Province of British Columbia, Ministry of Forests. 17 May 2007. Archived from the original on 30 January 2019. Retrieved 30 January 2019.
  45. Louda, Svaa M.; O'Brien, Charles W. (June 2002). "Unexpected Ecological Effects of Distributing the Exotic Weevil, Larinus planus (F.), for the Biological Control of Canada Thistle" (PDF). Conservation Biology. 16 (3): 717–727. doi:10.1046/j.1523-1739.2002.00541.x. S2CID   2367835.[ permanent dead link ]
  46. Turner et al. 1980.
  47. R. C. French, A. R. Lightfield: Induction of Systemic Aecial Infection in Canada Thistle (Cirsium arvense) by Teliospores of Puccinia punctiformis. In: Phytopathology. Band 80, Nr. 8, 1990, S. 872–877, DOI:10.1094/Phyto-80-872
  48. Berner, D. K., et al. (2013) Successful establishment of epiphytotics of Puccinia punctiformis for biological control of Cirsium arvense. Biological Control 67:350-360.
  49. Berner, D. K., et al. (2015) Asymptomatic systemic disease of Canada thistle (Cirsium arvense) caused by Puccinia punctiformis and changes in shoot density following inoculation. Biological Control 86:28-35.
  50. Administrator. "2011/12 Fall Alfalfa Herbicide Trials for Control of Canada Thistle". www.forageseed.net. Archived from the original on 2016-12-02. Retrieved 2016-12-01.
  51. Plants for a Future: Cirsium arvense
  52. "The Botanist". Archived from the original on 2017-04-27. Retrieved 2015-04-18.
  53. "Culture Keepers: Blowgun". YouTube. 2013-04-12. Archived from the original on 2021-12-21. Retrieved 2017-08-25.