Coelenterazine

Last updated
Coelenterazine
Coelenterazine.svg
Names
IUPAC name
6-(4-Hydroxyphenyl)-2-[(4-hydroxyphenyl)methyl]-8-(phenylmethyl)-7H-imidazo[1,2-a]pyrazin-3-one
Other names
Renilla luciferin
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.164.960 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C26H21N3O3/c30-20-10-6-18(7-11-20)15-23-26(32)29-16-24(19-8-12-21(31)13-9-19)27-22(25(29)28-23)14-17-4-2-1-3-5-17/h1-13,16,27,30-31H,14-15H2 Yes check.svgY
    Key: YHIPILPTUVMWQT-UHFFFAOYSA-N Yes check.svgY
  • InChI=1S/C26H21N3O3/c30-20-10-6-18(7-11-20)15-23-26(32)29-16-24(19-8-12-21(31)13-9-19)27-22(25(29)28-23)14-17-4-2-1-3-5-17/h1-13,16,27,30-31H,14-15H2
  • C1=CC=C(C=C1)CC2=C3N=C(C(=O)N3C=C(N2)C4=CC=C(C=C4)O)CC5=CC=C(C=C5)O
Properties
C26H21N3O3
Molar mass 423.472 g·mol−1
AppearanceOrange-yellow crystals
Melting point 175 to 178 °C (347 to 352 °F; 448 to 451 K)
Absorbance ε435 = 9800 M−1 cm−1 (methanol) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Coelenterazine is a luciferin, a molecule that emits light after reaction with oxygen, found in many aquatic organisms across eight phyla. [1] It is the substrate of many luciferases such as Renilla reniformis luciferase (Rluc), Gaussia luciferase (Gluc), and photoproteins, including aequorin, and obelin. All these proteins catalyze the oxidation of this substance, a reaction catalogued EC 1.13.12.5.

Contents

History

Coelenterazine was simultaneously isolated and characterized by two groups studying the luminescent organisms sea pansy (Renilla reniformis) and the cnidarian Aequorea victoria , respectively. [2] [3] Both groups independently discovered that the same compound was used in both luminescent systems. The molecule was named after the now-obsolete phylum coelenterata. Likewise, the two main metabolites – coelenteramide and coelenteramine – were named after their respective functional groups. While coelenterazine was first discovered in Aequorea victoria , it was later shown that they do not synthesize coelenterazine, but obtain it through their diet, largely from crustaceans and copepods. [4]

Occurrence

Coelenterazine is widely found in marine organisms including:

The compound has also been isolated from organisms that are not luminescent, such as the Atlantic herring and several shrimp species including Pandalus borealis and Pandalus platyuros .

Biosynthesis

Biosynthesis of coelenterazine in Metridia starts from two molecules of tyrosine and one molecule of phenylalanine, and some researchers believe this comes in the form of a cyclized "Phe-Tyr-Tyr" (FYY) peptide. [6]

Many members of the genus Metridia also produce luciferases that use this compound, [7] some of which are secreted into extracellular space, an unusual property for luciferases. [8]

Properties

Coelenterazine can be crystallized into orange-yellow crystals. The molecule absorbs light in the ultraviolet and visible spectrum, with peak absorption at 435 nm in methanol, giving the molecule a yellow color. The molecule spontaneously oxidizes in aerobic conditions or in some organic solvents such as dimethylformamide and DMSO and is preferentially stored in methanol or with an inert gas.

Synthetic coelenterazine derivatives

To improve its biophysical properties, derivatives of coelenterazine have been synthesized by means of different procedures including multicomponent strategies. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Bioluminescence</span> Emission of light by a living organism

Bioluminescence is the production and emission of light by living organisms. It is a form of chemiluminescence. Bioluminescence occurs widely in marine vertebrates and invertebrates, as well as in some fungi, microorganisms including some bioluminescent bacteria, and terrestrial arthropods such as fireflies. In some animals, the light is bacteriogenic, produced by symbiotic bacteria such as those from the genus Vibrio; in others, it is autogenic, produced by the animals themselves.

<span class="mw-page-title-main">Luciferase</span> Enzyme family

Luciferase is a generic term for the class of oxidative enzymes that produce bioluminescence, and is usually distinguished from a photoprotein. The name was first used by Raphaël Dubois who invented the words luciferin and luciferase, for the substrate and enzyme, respectively. Both words are derived from the Latin word lucifer, meaning "lightbearer", which in turn is derived from the Latin words for "light" (lux) and "to bring or carry" (ferre).

<span class="mw-page-title-main">Luciferin</span> Class of light-emitting chemical compounds

Luciferin is a generic term for the light-emitting compound found in organisms that generate bioluminescence. Luciferins typically undergo an enzyme-catalyzed reaction with molecular oxygen. The resulting transformation, which usually involves splitting off a molecular fragment, produces an excited state intermediate that emits light upon decaying to its ground state. The term may refer to molecules that are substrates for both luciferases and photoproteins.

<span class="mw-page-title-main">Sea pansy</span> Species of coral

The sea pansy, Renilla reniformis, is a species of soft coral in the family Renillidae. It is native to warm continental shelf waters of the Western Hemisphere. It is frequently found washed ashore on North East Florida beaches following northeasterly winds or rough surf conditions. It also can often be found living intertidally completely buried in the sand. Its predator is the striped sea slug, Armina tigrina.

<span class="mw-page-title-main">Aequorin</span> Calcium-activated photoprotein

Aequorin is a calcium-activated photoprotein isolated from the hydrozoan Aequorea victoria. Its bioluminescence was studied decades before the protein was isolated from the animal by Osamu Shimomura in 1962. In the animal, the protein occurs together with the green fluorescent protein to produce green light by resonant energy transfer, while aequorin by itself generates blue light.

<span class="mw-page-title-main">Bioluminescence imaging</span>

Bioluminescence imaging (BLI) is a technology developed over the past decades (1990's and onward). that allows for the noninvasive study of ongoing biological processes Recently, bioluminescence tomography (BLT) has become possible and several systems have become commercially available. In 2011, PerkinElmer acquired one of the most popular lines of optical imaging systems with bioluminescence from Caliper Life Sciences.

<span class="mw-page-title-main">Splendid lanternshark</span> Species of shark

The splendid lanternshark is a shark of the family Etmopteridae found in the western Pacific at depths between 120 and 210 m. Through the classification of Etmopterus species into several clades based on the positioning of their bioluminescent photophores, the splendid lanternshark can be considered a member of the Etmopterus pusillus clade.

In enzymology, an Oplophorus-luciferin 2-monooxygenase, also known as Oplophorus luciferase is a luciferase, an enzyme, from the deep-sea shrimp Oplophorus gracilirostris [2], belonging to a group of coelenterazine luciferases. Unlike other luciferases, it has a broader substrate specificity [3,4,6] and can also bind to bisdeoxycoelenterazine efficiently [3,4]. It is the third example of a luciferase to be purified in lab [2]. The systematic name of this enzyme class is Oplophorus-luciferin:oxygen 2-oxidoreductase (decarboxylating). This enzyme is also called Oplophorus luciferase.

<span class="mw-page-title-main">Renilla-luciferin 2-monooxygenase</span>

Renilla-luciferin 2-monooxygenase, Renilla luciferase, or RLuc, is a bioluminescent enzyme found in Renilla reniformis, belonging to a group of coelenterazine luciferases. Of this group of enzymes, the luciferase from Renilla reniformis has been the most extensively studied, and due to its bioluminescence requiring only molecular oxygen, has a wide range of applications, with uses as a reporter gene probe in cell culture, in vivo imaging, and various other areas of biological research. Recently, chimeras of RLuc have been developed and demonstrated to be the brightest luminescent proteins to date, and have proved effective in both noninvasive single-cell and whole body imaging.

<span class="mw-page-title-main">Vargulin</span> Chemical compound

Vargulin, also called Cypridinid luciferin, Cypridina luciferin, or Vargula luciferin, is the luciferin found in the ostracod Cypridina hilgendorfii, also named Vargula hilgendorfii. These bottom dwelling ostracods emit a light stream into water when disturbed presumably to deter predation. Vargulin is also used by the midshipman fish, Porichthys.

Photoproteins are a type of enzyme, made of protein, from bioluminescent organisms. They add to the function of the luciferins whose usual light-producing reaction is catalyzed by the enzyme luciferase.

<span class="mw-page-title-main">Coelenteramide</span> Chemical compound

Coelenteramide is the oxidized product, or oxyluciferin, of the bioluminescent reactions in many marine organisms that use coelenterazine. It was first isolated as a blue fluorescent protein from Aequorea victoria after the animals were stimulated to emit light. Under basic conditions, the compound will break down further into coelenteramine and 4-hydroxyphenylacetic acid.

<span class="mw-page-title-main">Coelenteramine</span> Chemical compound

Coelenteramine is a metabolic product of the bioluminescent reactions in organisms that utilize coelenterazine. It was first isolated from Aequorea victoria along with coelenteramide after coelenterates were stimulated to emit light.

<i>Vargula hilgendorfii</i> Species of seed shrimp

Vargula hilgendorfii, sometimes called the sea-firefly and one of three bioluminescent species known in Japan as umi-hotaru (海蛍), is a species of ostracod crustacean. It is the only member of genus Vargula to inhabit Japanese waters; all other members of its genus inhabit the Gulf of Mexico, the Caribbean Sea, and waters off the coast of California. V. hilgendorfii was formerly more common, but its numbers have fallen significantly.

<span class="mw-page-title-main">John Woodland Hastings</span>

John Woodland "Woody" Hastings, was a leader in the field of photobiology, especially bioluminescence, and was one of the founders of the field of circadian biology. He was the Paul C. Mangelsdorf Professor of Natural Sciences and Professor of Molecular and Cellular Biology at Harvard University. He published over 400 papers and co-edited three books.

<span class="mw-page-title-main">Bioluminescent bacteria</span>

Bioluminescent bacteria are light-producing bacteria that are predominantly present in sea water, marine sediments, the surface of decomposing fish and in the gut of marine animals. While not as common, bacterial bioluminescence is also found in terrestrial and freshwater bacteria. These bacteria may be free living or in symbiosis with animals such as the Hawaiian Bobtail squid or terrestrial nematodes. The host organisms provide these bacteria a safe home and sufficient nutrition. In exchange, the hosts use the light produced by the bacteria for camouflage, prey and/or mate attraction. Bioluminescent bacteria have evolved symbiotic relationships with other organisms in which both participants benefit close to equally. Another possible reason bacteria use luminescence reaction is for quorum sensing, an ability to regulate gene expression in response to bacterial cell density.

<span class="mw-page-title-main">Scintillon</span>

Scintillons are small structures in cytoplasm that produce light. Among bioluminescent organisms, only dinoflagellates have scintillons.

Eukrohnia fowleri is a deep-sea marine arrow worm. It is the only known bioluminescent member of the genus Eukrohnia, and one of the two known species of bioluminescent arrow worms, the other being the distantly related Caecosagitta macrocephala. The bioluminescent organ of Eukrohnia fowleri is found along the center of its tail fin on both its dorsal and ventral side. It has a secreted bioluminescence that is thought to be coelenterazine based. While both species use luciferases in conjunction with coelenterazine for light emission, the luciferase of Eukrohnia fowleri is highly stable after 30 minutes while the luciferase of Caecosagitta macrocephala becomes inactive. So far, there is no other bioluminescent organism that uses hexagonal packing in order to hold bioluminescent materials/ E. fowleri evolved through the adaptation to hypoxic water and due to the recent oxygenation of water they have been experiencing bottleneck events. These events have been seen as one of the reasons that E. fowleri have such low biodiversity.

Caecosagitta macrocephala is a deep sea marine chaetognath that is distributed in meso- and bathypelagic layers. It has a very wide distribution that ranges from the Subantarctic to Subarctic Ocean. Cecosagitta macrocephalas have large heads, hence their name “macro-cephala”. Within their eyes are photoreceptive regions that allow them to catch weak light at bathypelagic depths. Along with their eyes, their gut or intestine has orange pigmentation and a luminous organ that gleams due to bioluminescence unlike some other species of Sagittidae. To be more precise, the luminescent organ is located on the ventral edge of each anterior lateral fin. It is the only member of the genus Caecosagitta, and only one of the two known species of bioluminescent chaetognath, the other being the distantly related Eukrohnia fowleri. C. macrocephala has a secreted bioluminescence that is thought to be coelenterazine based. The luciferase is highly unstable, being unable to survive a single freeze-thaw, and is rapidly inactivated at ice-cold temperatures.

References

  1. 1 2 Shimomura, O. (2006). Bioluminescence: Chemical Principles and Methods . World Scientific Publishing. pp.  159–65. ISBN   978-981-256-801-4.
  2. Hori K, Charbonneau H, Hart RC, Cormier MJ (October 1977). "Structure of native Renilla reinformis luciferin". Proceedings of the National Academy of Sciences of the United States of America. 74 (10): 4285–7. Bibcode:1977PNAS...74.4285H. doi: 10.1073/pnas.74.10.4285 . PMC   431924 . PMID   16592444.
  3. Shimomura O, Johnson FH (April 1975). "Chemical nature of bioluminescence systems in coelenterates". Proceedings of the National Academy of Sciences of the United States of America. 72 (4): 1546–9. Bibcode:1975PNAS...72.1546S. doi: 10.1073/pnas.72.4.1546 . PMC   432574 . PMID   236561.
  4. Haddock SH, Rivers TJ, Robison BH (September 2001). "Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence". Proceedings of the National Academy of Sciences of the United States of America. 98 (20): 11148–51. Bibcode:2001PNAS...9811148H. doi: 10.1073/pnas.201329798 . PMC   58698 . PMID   11572972.
  5. Haddock SHD, Case JF (1994). "A bioluminescent chaetognath" (PDF). Nature . 367 (6460): 225–26. Bibcode:1994Natur.367..225H. doi:10.1038/367225a0. S2CID   4362422. Archived from the original (PDF) on 2008-05-16. Retrieved 2008-10-28.
  6. Francis WR, Shaner NC, Christianson LM, Powers ML, Haddock SH (30 June 2015). "Occurrence of Isopenicillin-N-Synthase Homologs in Bioluminescent Ctenophores and Implications for Coelenterazine Biosynthesis". PLOS ONE. 10 (6): e0128742. Bibcode:2015PLoSO..1028742F. doi: 10.1371/journal.pone.0128742 . PMC   4488382 . PMID   26125183.
  7. Tessler M, Gaffney JP, Crawford JM, Trautman E, Gujarati NA, Alatalo P, et al. (14 September 2018). "Metridia lucens". PeerJ. 6: e5506. doi: 10.7717/peerj.5506 . PMC   6140675 . PMID   30233994.
  8. Markova SV, Golz S, Frank LA, Kalthof B, Vysotski ES (January 2004). "Cloning and expression of cDNA for a luciferase from the marine copepod Metridia longa. A novel secreted bioluminescent reporter enzyme". The Journal of Biological Chemistry. 279 (5): 3212–7. doi: 10.1074/jbc.M309639200 . PMID   14583604.
  9. Vece V, Vuocolo G (2015). "Multicomponent Synthesis of Novel Coelenterazine Derivatives Substituted at the C-3 Position". Tetrahedron . 71 (46): 8781–85. doi:10.1016/j.tet.2015.09.048.