Cosmic censorship hypothesis

Last updated

The weak and the strong cosmic censorship hypotheses are two mathematical conjectures about the structure of gravitational singularities arising in general relativity.

Contents

Singularities that arise in the solutions of Einstein's equations are typically hidden within event horizons, and therefore cannot be observed from the rest of spacetime. Singularities that are not so hidden are called naked . The weak cosmic censorship hypothesis was conceived by Roger Penrose in 1969 and posits that no naked singularities exist in the universe.

Basics

Since the physical behavior of singularities is unknown, if singularities can be observed from the rest of spacetime, causality may break down, and physics may lose its predictive power. The issue cannot be avoided, since according to the Penrose–Hawking singularity theorems, singularities are inevitable in physically reasonable situations. Still, in the absence of naked singularities, the universe, as described by the general theory of relativity, is deterministic: [1] it is possible to predict the entire evolution of the universe (possibly excluding some finite regions of space hidden inside event horizons of singularities), knowing only its condition at a certain moment of time (more precisely, everywhere on a spacelike three-dimensional hypersurface, called the Cauchy surface). Failure of the cosmic censorship hypothesis leads to the failure of determinism, because it is yet impossible to predict the behavior of spacetime in the causal future of a singularity. Cosmic censorship is not merely a problem of formal interest; some form of it is assumed whenever black hole event horizons are mentioned.[ citation needed ]

Roger Penrose first formulated the cosmic censorship hypothesis in 1969. Roger Penrose-6Nov2005.jpg
Roger Penrose first formulated the cosmic censorship hypothesis in 1969.

The hypothesis was first formulated by Roger Penrose in 1969, [2] and it is not stated in a completely formal way. In a sense it is more of a research program proposal: part of the research is to find a proper formal statement that is physically reasonable, falsifiable, and sufficiently general to be interesting. [3] Because the statement is not a strictly formal one, there is sufficient latitude for (at least) two independent formulations: a weak form, and a strong form.

Weak and strong cosmic censorship hypothesis

The weak and the strong cosmic censorship hypotheses are two conjectures concerned with the global geometry of spacetimes.

The weak cosmic censorship hypothesis asserts there can be no singularity visible from future null infinity. In other words, singularities need to be hidden from an observer at infinity by the event horizon of a black hole. Mathematically, the conjecture states that, for generic initial data, the maximal Cauchy development possesses a complete future null infinity.

The strong cosmic censorship hypothesis asserts that, generically, general relativity is a deterministic theory, in the same sense that classical mechanics is a deterministic theory. In other words, the classical fate of all observers should be predictable from the initial data. Mathematically, the conjecture states that the maximal Cauchy development of generic compact or asymptotically flat initial data is locally inextendible as a regular Lorentzian manifold. Taken in its strongest sense, the conjecture suggests locally inextendibility of the maximal Cauchy development as a continuous Lorentzian manifold [very Strong Cosmic Censorship]. This strongest version was disproven in 2018 by Mihalis Dafermos and Jonathan Luk for the Cauchy horizon of an uncharged, rotating black hole. [4]

The two conjectures are mathematically independent, as there exist spacetimes for which weak cosmic censorship is valid but strong cosmic censorship is violated and, conversely, there exist spacetimes for which weak cosmic censorship is violated but strong cosmic censorship is valid.

Example

The Kerr metric, corresponding to a black hole of mass and angular momentum , can be used to derive the effective potential for particle orbits restricted to the equator (as defined by rotation). This potential looks like: [5]

where is the coordinate radius, and are the test-particle's conserved energy and angular momentum respectively (constructed from the Killing vectors).

To preserve cosmic censorship, the black hole is restricted to the case of . For there to exist an event horizon around the singularity, the requirement must be satisfied. [5] This amounts to the angular momentum of the black hole being constrained to below a critical value, outside of which the horizon would disappear.

The following thought experiment is reproduced from Hartle's Gravity:

Imagine specifically trying to violate the censorship conjecture. This could be done by somehow imparting an angular momentum upon the black hole, making it exceed the critical value (assume it starts infinitesimally below it). This could be done by sending a particle of angular momentum . Because this particle has angular momentum, it can only be captured by the black hole if the maximum potential of the black hole is less than .
Solving the above effective potential equation for the maximum under the given conditions results in a maximum potential of exactly . Testing other values shows that no particle with enough angular momentum to violate the censorship conjecture would be able to enter the black hole, because they have too much angular momentum to fall in.

Problems with the concept

There are a number of difficulties in formalizing the hypothesis:

In 1991, John Preskill and Kip Thorne bet against Stephen Hawking that the hypothesis was false. Hawking conceded the bet in 1997, due to the discovery of the special situations just mentioned, which he characterized as "technicalities". Hawking later reformulated the bet to exclude those technicalities. The revised bet is still open (although Hawking died in 2018), the prize being "clothing to cover the winner's nakedness". [6]

Counter-example

An exact solution to the scalar-Einstein equations which forms a counterexample to many formulations of the cosmic censorship hypothesis was found by Mark D. Roberts in 1985:

where is a constant. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Black hole</span> Object that has a no-return boundary

A black hole is a region of spacetime where gravity is so strong that nothing, including light or other electromagnetic waves, has enough energy to escape it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. Although it has a great effect on the fate and circumstances of an object crossing it, it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

In general relativity, a naked singularity is a hypothetical gravitational singularity without an event horizon. In a black hole, the singularity is completely enclosed by a boundary known as the event horizon, inside which the curvature of spacetime caused by the singularity is so strong that light cannot escape. Hence, objects inside the event horizon—including the singularity itself—cannot be observed directly. A naked singularity, by contrast, would be observable from the outside.

<span class="mw-page-title-main">Gravitational singularity</span> Condition in which spacetime itself breaks down

A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.

The no-hair theorem states that all stationary black hole solutions of the Einstein–Maxwell equations of gravitation and electromagnetism in general relativity can be completely characterized by only three independent externally observable classical parameters: mass, electric charge, and angular momentum. Other characteristics are uniquely determined by these three parameters, and all other information about the matter that formed a black hole or is falling into it "disappears" behind the black-hole event horizon and is therefore permanently inaccessible to external observers after the black hole "settles down". Physicist John Archibald Wheeler expressed this idea with the phrase "black holes have no hair", which was the origin of the name.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon. The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.

A Tipler cylinder, also called a Tipler time machine, is a hypothetical object theorized to be a potential mode of time travel—although results have shown that a Tipler cylinder could only allow time travel if its length were infinite or with the existence of negative energy.

<span class="mw-page-title-main">Black hole information paradox</span> Mystery of disappearance of information in a black hole

The black hole information paradox is a puzzle that appears when the predictions of quantum mechanics and general relativity are combined. The theory of general relativity predicts the existence of black holes that are regions of spacetime from which nothing — not even light — can escape. In the 1970s, Stephen Hawking applied the semi-classical approach of quantum field theory in curved spacetime to such systems and found that an isolated black hole would emit a form of radiation called Hawking radiation. Hawking also argued that the detailed form of the radiation would be independent of the initial state of the black hole, and would depend only on its mass, electric charge and angular momentum.


Fuzzball theory, which is derived from superstring theory, is advanced by its proponents as a description of black holes that harmonizes quantum mechanics and Albert Einstein's general theory of relativity, which have long been incompatible. Fuzzball theory dispenses with the singularity at the heart of a black hole by positing that the entire region within the black hole's event horizon is actually an extended object: a ball of strings, which are advanced as the ultimate building blocks of matter and light. Under string theory, strings are bundles of energy vibrating in complex ways in both the three physical dimensions of space as well as in compact directions—extra dimensions interwoven in the quantum foam.

The Kerr–Newman metric is the most general asymptotically flat, stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged, rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions, that is, of solutions to the Einstein–Maxwell equations which account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

In physics, a Killing horizon is a geometrical construct used in general relativity and its generalizations to delineate spacetime boundaries without reference to the dynamic Einstein field equations. Mathematically a Killing horizon is a null hypersurface defined by the vanishing of the norm of a Killing vector field. It can also be defined as a null hypersurface generated by a Killing vector, which in turn is null at that surface.

In physics, there is a speculative hypothesis that, if there were a black hole with the same mass, charge and angular momentum as an electron, it would share other properties of the electron. Most notably, Brandon Carter showed in 1968 that the magnetic moment of such an object would match that of an electron. This is interesting because calculations ignoring special relativity and treating the electron as a small rotating sphere of charge give a magnetic moment roughly half the experimental value.

A ring singularity or ringularity is the gravitational singularity of a rotating black hole, or a Kerr black hole, that is shaped like a ring.

The following outline is provided as an overview of and topical guide to black holes:

In mathematical general relativity, the Penrose inequality, first conjectured by Sir Roger Penrose, estimates the mass of a spacetime in terms of the total area of its black holes and is a generalization of the positive mass theorem. The Riemannian Penrose inequality is an important special case. Specifically, if (Mg) is an asymptotically flat Riemannian 3-manifold with nonnegative scalar curvature and ADM mass m, and A is the area of the outermost minimal surface (possibly with multiple connected components), then the Riemannian Penrose inequality asserts

In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s.

In theoretical physics, null infinity is a region at the boundary of asymptotically flat spacetimes. In general relativity, straight paths in spacetime, called geodesics, may be space-like, time-like, or light-like. The distinction between these paths stems from whether the spacetime interval of the path is positive, negative, or zero. Light-like paths physically correspond to physical phenomena which propagate through space at the speed of light, such as electromagnetic radiation and gravitational radiation. The boundary of a flat spacetime is known as conformal infinity, and can be thought of as the end points of all geodesics as they go off to infinity. The region of null infinity corresponds to the terminus of all null geodesics in a flat Minkowski space. The different regions of conformal infinity are most often visualized on a Penrose diagram, where they make up the boundary of the diagram. There are two distinct region of null infinity, called past and future null infinity, which can be denoted using a script 'I' as and . These two regions are often referred to as 'scri-plus' and 'scri-minus' respectively. Geometrically, each of these regions actually has the structure of a topologically cylindrical three dimensional region.

References

  1. Earman, J. (2007). "Aspects of Determinism in Modern Physics" (PDF). The Philosophy of Physics. pp. 1369–1434. Archived (PDF) from the original on 2014-05-22.
  2. Penrose, Roger (1969). "Gravitational collapse: The role of general relativity". Nuovo Cimento . Rivista Serie. 1: 252–276. Bibcode:1969NCimR...1..252P.
  3. "A Bet on a Cosmic Scale, And a Concession, Sort Of". New York Times. February 12, 1997.
  4. Hartnett, Kevin (17 May 2018). "Mathematicians Disprove Conjecture Made to Save Black Holes". Quanta Magazine . Retrieved 29 March 2020.
  5. 1 2 James B Hartle, Gravity in chapter 15: Rotating Black Holes. (2003. ISBN   0-8053-8662-9)
  6. "New bet on naked singularities". 5 February 1997. Archived from the original on 6 June 2004.
  7. Roberts, M. D. (1989). "Scalar field counterexamples to the cosmic censorship hypothesis". General Relativity and Gravitation. Springer Science and Business Media LLC. 21 (9): 907–939. Bibcode:1989GReGr..21..907R. doi:10.1007/bf00769864. ISSN   0001-7701. S2CID   121601921.

Further reading