Sonic black hole

Last updated

A sonic black hole, sometimes called a dumb hole or acoustic black hole, is a phenomenon in which phonons (sound perturbations) are unable to escape from a region of a fluid that is flowing more quickly than the local speed of sound. They are called sonic, or acoustic, black holes because these trapped phonons are analogous to light in astrophysical (gravitational) black holes. Physicists are interested in them because they have many properties similar to astrophysical black holes and, in particular, emit a phononic version of Hawking radiation. [1] [2] This Hawking radiation can be spontaneously created by quantum vacuum fluctuations, in close analogy with Hawking radiation from a real black hole. On the other hand, the Hawking radiation can be stimulated in a classical process. The boundary of a sonic black hole, at which the flow speed changes from being greater than the speed of sound to less than the speed of sound, is called the event horizon.

Contents

A rotating sonic black hole was used in 2010 to give the first laboratory testing of superradiance, a process whereby energy is extracted from a black hole. [3]

Sonic black holes are possible because phonons in perfect fluids exhibit the same properties of motion as fields, such as gravity, in space and time. [1] For this reason, a system in which a sonic black hole can be created is called a gravity analogue. Nearly any fluid can be used to create an acoustic event horizon, but the viscosity of most fluids creates random motion[ citation needed ] that makes features like Hawking radiation nearly impossible to detect. The complexity of such a system would make it very difficult to gain any knowledge about such features even if they could be detected. [4] Many nearly perfect fluids have been suggested for use in creating sonic black holes, such as superfluid helium, one–dimensional degenerate Fermi gases, and Bose–Einstein condensate. Gravity analogues other than phonons in a fluid, such as slow light and a system of ions, have also been proposed for studying black hole analogues. [5] The fact that so many systems mimic gravity is sometimes used as evidence for the theory of emergent gravity, which could help reconcile relativity, and quantum mechanics. [6]

Acoustic black holes were first theorized to be useful by William Unruh in 1981. [7] However, the first black hole analogue was not created in a laboratory until 2009. It was created in a rubidium Bose–Einstein condensate using a technique called density inversion. This technique creates a flow by repelling the condensate with a potential minimum. The surface gravity and temperature of the sonic black hole were measured, but no attempt was made to detect Hawking radiation. However, the scientists who created it predicted that the experiment was suitable for detection and suggested a method by which it might be done by lasing the phonons. [8] In 2014, stimulated Hawking radiation was reported in an analogue black-hole laser by the same researchers. [2] Quantum, spontaneous Hawking radiation was observed later. [9] [10] [11]

See also

Notes

  1. 1 2 Visser, Matt (1998). "Acoustic black holes: Horizons, ergospheres and Hawking radiation". Classical and Quantum Gravity. 15 (6): 1767–1791. arXiv: gr-qc/9712010 . Bibcode:1998CQGra..15.1767V. doi:10.1088/0264-9381/15/6/024. S2CID   5526480.
  2. 1 2 Steinhauer, Jeff (2014). "Observation of self-amplifying Hawking radiation in an analogue black-hole laser". Nature Physics. 10 (11): 864–869. arXiv: 1409.6550 . Bibcode:2014NatPh..10..864S. doi:10.1038/nphys3104. S2CID   26867033.
  3. Torres, Theo; Patrick, Sam; Coutant, Antonin; Richartz, Maurício; Tedford, Edmund W.; Weinfurtner, Silke (2017). "Rotational superradiant scattering in a vortex flow". Nature Physics. 13 (9): 833–836. Bibcode:2017NatPh..13..833T. doi:10.1038/nphys4151. S2CID   119209800.
  4. Jannes, Gil (2009). "Emergent gravity: The BEC paradigm". arXiv: 0907.2839 . Bibcode:2009PhDT.......109J.{{cite journal}}: Cite journal requires |journal= (help)
  5. Horstmann, Birger; Schützhold, Ralf; Reznik, Benni; Fagnocchi, Serena; Cirac, J. Ignacio (2011). "Hawking radiation on an ion ring in the quantum regime". New Journal of Physics. 13 (4): 045008. arXiv: 1008.3494 . Bibcode:2011NJPh...13d5008H. doi:10.1088/1367-2630/13/4/045008.
  6. Jannes, Gil (2009). "Emergent gravity: The BEC paradigm". arXiv: 0907.2839 . Bibcode:2009PhDT.......109J.{{cite journal}}: Cite journal requires |journal= (help).
  7. Unruh, W. G. (1981). "Experimental Black-Hole Evaporation?". Physical Review Letters. 46 (21): 1351–1353. Bibcode:1981PhRvL..46.1351U. doi:10.1103/PhysRevLett.46.1351.
  8. Lahav, Oren; Itah, Amir; Blumkin, Alex; Gordon, Carmit; Rinott, Shahar; Zayats, Alona; Steinhauer, Jeff (2010). "Realization of a Sonic Black Hole Analog in a Bose-Einstein Condensate". Physical Review Letters. 105 (24): 240401. arXiv: 0906.1337 . Bibcode:2010PhRvL.105x0401L. doi:10.1103/PhysRevLett.105.240401. PMID   21231510. S2CID   45683876.
  9. Steinhauer, Jeff (October 2016). "Observation of quantum Hawking radiation and its entanglement in an analogue black hole". Nature Physics. 12 (10): 959–965. arXiv: 1510.00621 . Bibcode:2016NatPh..12..959S. doi:10.1038/nphys3863. ISSN   1745-2481. S2CID   119197166.
  10. Muñoz de Nova, Juan Ramón; Golubkov, Katrine; Kolobov, Victor I.; Steinhauer, Jeff (May 2019). "Observation of thermal Hawking radiation and its temperature in an analogue black hole". Nature. 569 (7758): 688–691. arXiv: 1809.00913 . Bibcode:2019Natur.569..688M. doi:10.1038/s41586-019-1241-0. ISSN   1476-4687. PMID   31142857. S2CID   119327617.
  11. Kolobov, Victor I.; Golubkov, Katrine; Muñoz de Nova, Juan Ramón; Steinhauer, Jeff (March 2021). "Observation of stationary spontaneous Hawking radiation and the time evolution of an analogue black hole". Nature Physics. 17 (3): 362–367. arXiv: 1910.09363 . Bibcode:2021NatPh..17..362K. doi:10.1038/s41567-020-01076-0. ISSN   1745-2481. S2CID   230508375.

Related Research Articles

Black hole Astronomical object

A black hole is a region of spacetime where gravity is so strong that nothing – no particles or even electromagnetic radiation such as light – can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of no escape is called the event horizon. Although it has a great effect on the fate and circumstances of an object crossing it, it has no locally detectable features according to general relativity. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is of the order of billionths of a kelvin for stellar black holes, making it essentially impossible to observe directly.

General relativity Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

Hawking radiation Thermal radiation emitted outside the event horizon of a black hole

Hawking radiation is thermal radiation that is theorized to be released outside a black hole's event horizon because of relativistic quantum effects. It is named after the physicist Stephen Hawking, who developed a theoretical argument for its existence in 1974. Hawking radiation is a purely kinematic effect that is generic to Lorentzian geometries containing event horizons or local apparent horizons.

Polariton Quasiparticles arising from EM wave coupling

In physics, polaritons are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation. They are an expression of the common quantum phenomenon known as level repulsion, also known as the avoided crossing principle. Polaritons describe the crossing of the dispersion of light with any interacting resonance. To this extent polaritons can also be thought of as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation. The polariton is a bosonic quasiparticle, and should not be confused with the polaron, which is an electron plus an attached phonon cloud.

Black hole thermodynamics Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black-hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

Quantum foam is the quantum fluctuation of spacetime on very small scales due to quantum mechanics. Matter and antimatter are constantly created and destroyed. These subatomic objects are called virtual particles. The idea was devised by John Wheeler in 1955.

A gravastar is an object hypothesized in astrophysics by Pawel O. Mazur and Emil Mottola as an alternative to the black hole theory. It has usual black hole metric outside of the horizon, but de Sitter metric inside. On the horizon there is a thin shell of matter. The term "gravastar" is a portmanteau of the words "gravitational vacuum star".

In theoretical physics, the anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) which are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) which are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.

The Immirzi parameter is a numerical coefficient appearing in loop quantum gravity (LQG), a nonperturbative theory of quantum gravity. The Immirzi parameter measures the size of the quantum of area in Planck units. As a result, its value is currently fixed by matching the semiclassical black hole entropy, as calculated by Stephen Hawking, and the counting of microstates in loop quantum gravity.

In theoretical physics, an extremal black hole is a black hole with the minimal possible mass that can be compatible with a given charge and angular momentum. In other words, this is the smallest possible black hole that can exist while rotating at a given fixed constant speed with some fixed charge.

Micro black holes, also called mini black holes or quantum mechanical black holes, are hypothetical tiny black holes, for which quantum mechanical effects play an important role. The concept that black holes may exist that are smaller than stellar mass was introduced in 1971 by Stephen Hawking.

Black hole information paradox Whether information can disappear in a black hole

The black hole information paradox is a puzzle resulting from the combination of quantum mechanics and general relativity. In the 1970s Stephen Hawking found that an isolated black hole would emit radiation at a temperature controlled by its mass, charge and angular momentum. Hawking also argued that the details of the radiation would be independent of the initial state of the black hole. If so, this would allow physical information to permanently disappear in a black hole, allowing many physical states to evolve into the same state. However, this violates a core precept of both classical and quantum physics—that, in principle, the state of a system at one point in time should determine its value at any other time. Specifically, in quantum mechanics the state of the system is encoded by its wave function. The evolution of the wave function is determined by a unitary operator, and unitarity implies that the wave function at any instant of time can be used to determine the wave function either in the past or the future.

In black hole physics and inflationary cosmology, the trans-Planckian problem is the problem of the appearance of quantities beyond the Planck scale, which raise doubts on the physical validity of some results in these two areas, since one expects the physical laws to suffer radical modifications beyond the Planck scale.

In mathematical physics, a metric describes the arrangement of relative distances within a surface or volume, usually measured by signals passing through the region – essentially describing the intrinsic geometry of the region. An acoustic metric will describe the signal-carrying properties characteristic of a given particulate medium in acoustics, or in fluid dynamics. Other descriptive names such as sonic metric are also sometimes used, interchangeably.

In physics, superradiance is the radiation enhancement effects in several contexts including quantum mechanics, astrophysics and relativity.

An optical black hole is a phenomenon in which slow light is passed through a Bose–Einstein condensate that is itself spinning faster than the local speed of light within to create a vortex capable of trapping the light behind an event horizon just as a gravitational black hole would.

Polariton superfluid is predicted to be a state of the exciton-polaritons system that combines the characteristics of lasers with those of excellent electrical conductors. Researchers look for this state in a solid state optical microcavity coupled with quantum well excitons. The idea is to create an ensemble of particles known as exciton-polaritons and trap them. Wave behavior in this state results in a light beam similar to that from a laser but possibly more energy efficient.

Superfluid vacuum theory Theory of fundamental physics

Superfluid vacuum theory (SVT), sometimes known as the BEC vacuum theory, is an approach in theoretical physics and quantum mechanics where the fundamental physical vacuum is viewed as superfluid or as a Bose–Einstein condensate (BEC).

Superfluidity State of matter

Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two isotopes of helium when they are liquefied by cooling to cryogenic temperatures. It is also a property of various other exotic states of matter theorized to exist in astrophysics, high-energy physics, and theories of quantum gravity. The theory of superfluidity was developed by Soviet theoretical physicists Lev Landau and Isaak Khalatnikov.

A black hole firewall is a hypothetical phenomenon where an observer falling into a black hole encounters high-energy quanta at the event horizon. The "firewall" phenomenon was proposed in 2012 by physicists Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully as a possible solution to an apparent inconsistency in black hole complementarity. The proposal is sometimes referred to as the AMPS firewall, an acronym for the names of the authors of the 2012 paper. The potential inconsistency pointed out by AMPS had been pointed out earlier by Samir Mathur who used the argument in favour of the fuzzball proposal. The use of a firewall to resolve this inconsistency remains controversial, with physicists divided as to the solution to the paradox.