Cysteine synthase

Last updated
cysteine synthase
Identifiers
EC no. 2.5.1.47
CAS no. 37290-89-4
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a cysteine synthase (EC 2.5.1.47) is an enzyme that catalyzes the chemical reaction

O3-acetyl-L-serine + hydrogen sulfide L-cysteine + acetate

Thus, the two substrates of this enzyme are O3-acetyl-L-serine and hydrogen sulfide, whereas its two products are L-cysteine and acetate.

This enzyme belongs to the family of transferases, specifically those transferring aryl or alkyl groups other than methyl groups. The systematic name of this enzyme class is O3-acetyl-L-serine:hydrogen-sulfide 2-amino-2-carboxyethyltransferase. Other names in common use include O-acetyl-L-serine sulfhydrylase, O-acetyl-L-serine sulfohydrolase, O-acetylserine (thiol)-lyase, O-acetylserine (thiol)-lyase A, O-acetylserine sulfhydrylase, O3-acetyl-L-serine acetate-lyase (adding hydrogen-sulfide), acetylserine sulfhydrylase, cysteine synthetase, S-sulfocysteine synthase, 3-O-acetyl-L-serine:hydrogen-sulfide, and 2-amino-2-carboxyethyltransferase. This enzyme participates in 3 metabolic pathways: cysteine metabolism, selenoamino acid metabolism, and sulfur metabolism. It employs one cofactor, pyridoxal phosphate.

Structural studies

As of late 2007, 12 structures have been solved for this class of enzymes, with PDB accession codes 1O58, 1VE1, 1Y7L, 1Z7W, 1Z7Y, 2BHS, 2BHT, 2EGU, 2ISQ, 2Q3B, 2Q3C, and 2Q3D.

Related Research Articles

<span class="mw-page-title-main">Cysteine</span> Proteinogenic amino acid

Cysteine is a semiessential proteinogenic amino acid with the formula HOOC−CH(−NH2)−CH2−SH. The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. Cysteine is chiral, but interestingly, both D and L-cysteine are found in nature with D-cysteine having been found in developing brain.

<span class="mw-page-title-main">Methionine</span> Sulfur-containing amino acid

Methionine is an essential amino acid in humans.

<span class="mw-page-title-main">Pyridoxal phosphate</span> Active form of vitamin B6

Pyridoxal phosphate (PLP, pyridoxal 5'-phosphate, P5P), the active form of vitamin B6, is a coenzyme in a variety of enzymatic reactions. The International Union of Biochemistry and Molecular Biology has catalogued more than 140 PLP-dependent activities, corresponding to ~4% of all classified activities. The versatility of PLP arises from its ability to covalently bind the substrate, and then to act as an electrophilic catalyst, thereby stabilizing different types of carbanionic reaction intermediates.

<span class="mw-page-title-main">Sulfur assimilation</span> Incorporation of sulfur into living organisms

Sulfur assimilation is the process by which living organisms incorporate sulfur into their biological molecules. In plants, sulfate is absorbed by the roots and then be transported to the chloroplasts by the transipration stream where the sulfur are reduced to sulfide with the help of a series of enzymatic reactions. Furthermore, the reduced sulfur is incorporated into cysteine, an amino acid that is a precursor to many other sulfur-containing compounds. In animals, sulfur assimilation occurs primarily through the diet, as animals cannot produce sulfur-containing compounds directly. Sulfur is incorporated into amino acids such as cysteine and methionine, which are used to build proteins and other important molecules. Besides, With the rapid development of economy, the increase emission of sulfur results in environmental issues, such as acid rain and hydrogen sulfilde.

<span class="mw-page-title-main">Cystathionine beta synthase</span> Mammalian protein found in humans

Cystathionine-β-synthase, also known as CBS, is an enzyme (EC 4.2.1.22) that in humans is encoded by the CBS gene. It catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine:

<span class="mw-page-title-main">Cystathionine gamma-lyase</span> Protein-coding gene in the species Homo sapiens

The enzyme cystathionine γ-lyase (EC 4.4.1.1, CTH or CSE; also cystathionase; systematic name L-cystathionine cysteine-lyase (deaminating; 2-oxobutanoate-forming)) breaks down cystathionine into cysteine, 2-oxobutanoate (α-ketobutyrate), and ammonia:

<span class="mw-page-title-main">Transsulfuration pathway</span>

The transsulfuration pathway is a metabolic pathway involving the interconversion of cysteine and homocysteine through the intermediate cystathionine. Two transsulfurylation pathways are known: the forward and the reverse.

<i>O</i>-Acetylserine Chemical compound

O-Acetylserine is an α-amino acid with the chemical formula HO2CCH(NH2)CH2OC(O)CH3. It is an intermediate in the biosynthesis of the common amino acid cysteine in bacteria and plants. O-Acetylserine is biosynthesized by acetylation of the serine by the enzyme serine transacetylase. The enzyme O-acetylserine (thiol)-lyase, using sulfide sources, converts this ester into cysteine, releasing acetate:

The enzyme cysteine lyase catalyzes the chemical reaction

The enzyme L-3-cyanoalanine synthase catalyzes the chemical reaction

<span class="mw-page-title-main">Methionine gamma-lyase</span>

The enzyme methionine γ-lyase (EC 4.4.1.11, MGL) is in the γ-family of PLP-dependent enzymes. It degrades sulfur-containing amino acids to α-keto acids, ammonia, and thiols:

<span class="mw-page-title-main">Serine O-acetyltransferase</span>

In enzymology, a serine O-acetyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a beta-pyrazolylalanine synthase (EC 2.5.1.51) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cystathionine gamma-synthase</span> Class of enzymes

In enzymology, a cystathionine gamma-synthase is an enzyme that catalyzes the formation of cystathionine from cysteine and an activated derivative of homoserine, e.g.:

In enzymology, a L-mimosine synthase (EC 2.5.1.52) is an enzyme that catalyzes the chemical reaction

In enzymology, an O-acetylhomoserine aminocarboxypropyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, an O-phosphoserine sulfhydrylase is an enzyme that catalyzes the chemical reaction

In enzymology, an uracilylalanine synthase (EC 2.5.1.53) is an enzyme that catalyzes the chemical reaction

In enzymology, a zeatin 9-aminocarboxyethyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Cys/Met metabolism PLP-dependent enzyme family</span>

In molecular biology, the Cys/Met metabolism PLP-dependent enzyme family is a family of proteins including enzymes involved in cysteine and methionine metabolism which use PLP (pyridoxal-5'-phosphate) as a cofactor.

References