Decaborane

Last updated
Decaborane
Decaborane(14)-from-xtal-view-1-tilt-3D-bs-17.png
Decaborane.png
Names
Other names
decaborane
decaboron tetradecahydride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.037.904 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 241-711-8
PubChem CID
UNII
  • InChI=1S/B10H14/c11-5-1-2-3(1,5)7(2,9(3,5,11)13-7)8(2)4(1,2)6(1,5)10(4,8,12-6)14-8/h1-10H Yes check.svgY
    Key: XAMMYYSPUSIWAS-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/B10H14/c11-5-1-2-3(1,5)7(2,9(3,5,11)13-7)8(2)4(1,2)6(1,5)10(4,8,12-6)14-8/h1-10H
    Key: XAMMYYSPUSIWAS-UHFFFAOYAD
  • [H]1[BH]234[BH]156[BH]278[BH]39([H]4)[BH]712[BH]853[BH]645[BH]311[BH]922[BH]14([H]5)[H]2
Properties
B10H14
Molar mass 122.22 g/mol
AppearanceWhite crystals
Odor bitter, chocolate-like or burnt rubber [1]
Density 0.94 g/cm3 [1]
Melting point 97–98 °C (207–208 °F; 370–371 K)
Boiling point 213 °C (415 °F; 486 K)
Solubility in other solventsSlightly, in cold water.
Vapor pressure 0.2 mmHg [1]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
may ignite spontaneously on exposure to air [1]
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H228, H301, H310, H316, H320, H330, H335, H336, H370, H372
P210, P240, P241, P260, P261, P262, P264, P270, P271, P280, P284, P301+P310, P302+P350, P304+P340, P305+P351+P338, P307+P311, P310, P312, P314, P320, P321, P322, P330, P332+P313, P337+P313, P361, P363, P370+P378, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
3
2
2
W
Flash point 80 °C; 176 °F; 353 K
149 °C (300 °F; 422 K)
Lethal dose or concentration (LD, LC):
276 mg/m3 (rat, 4 hr)
72 mg/m3 (mouse, 4 hr)
144 mg/m3 (mouse, 4 hr) [2]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.3 mg/m3 (0.05 ppm) [skin] [1]
REL (Recommended)
TWA 0.3 mg/m3 (0.05 ppm) ST 0.9 mg/m3 (0.15 ppm) [skin] [1]
IDLH (Immediate danger)
15 mg/m3 [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Decaborane, also called decaborane(14), is the borane with the chemical formula B 10 H 14. This white crystalline compound is one of the principal boron hydride clusters, both as a reference structure and as a precursor to other boron hydrides. It is toxic and volatile, giving off a foul odor, like that of burnt rubber or chocolate.

Contents

Handling, properties and structure

The physical characteristics of decaborane(14) resemble those of naphthalene and anthracene, all three of which are volatile colorless solids. Sublimation is the common method of purification. Decaborane is highly flammable, and burns with a bright green flame like other boron hydrides. It is not sensitive to moist air, although it hydrolyzes in boiling water, releasing hydrogen and giving a solution of boric acid. It is soluble in cold water as well as a variety of non-polar and moderately polar solvents. [3]

In decaborane, the B10 framework resembles an incomplete octadecahedron. Each boron has one "radial" hydride, and four boron atoms near the open part of the cluster feature extra hydrides. In the language of cluster chemistry, the structure is classified as "nido".

Synthesis and reactions

It is commonly synthesized via the pyrolysis of smaller boron hydride clusters. For example, pyrolysis of B2H6 or B5H9 gives decaborane, with loss of H2. [4] On a laboratory scale, sodium borohydride is treated with boron trifluoride to give NaB11H14, which is acidified to release borane and hydrogen gas. [3]

It reacts with Lewis bases (L) such as CH3CN and Et2S, to form adducts: [5] [6]

B10H14 + 2 L → B10H12L2 + H2

These species, which are classified as "arachno" clusters, in turn react with acetylene to give the "closo" ortho-carborane:

B10H12·2L + C2H2 → C2B10H12 + 2 L + H2

Decaborane(14) is a weak Brønsted acid. Monodeprotonation generates the anion [B10H13], with again a nido structure.

In the Brellochs reaction, decaborane is converted to arachno-CB9H14:

B10H14 + CH2O + 2 OH + H2O → CB9H14 + B(OH)4 + H2

Possible applications

Decaborane has no significant commercial applications, although the compound has often been investigated. It and its derivatives were investigated as an additive to special high-performance rocket fuels. Its derivates were investigated as well, e.g. ethyl decaborane.[ citation needed ]

Decaborane is an effective reagent for the reductive amination of ketones and aldehydes. [7]

Decaborane has been assessed for low energy ion implantation of boron in the manufacture of semiconductors. It has also been considered for plasma-assisted chemical vapor deposition for the manufacture of boron-containing thin films. In fusion research, the neutron-absorbing nature of boron has led to the use of these thin boron-rich films to "boronize" the walls of the tokamak vacuum vessel to reduce recycling of particles and impurities into the plasma and improve overall performance. [8] It has been evaluated in the context of nuclear fusion. [9]

Safety

Decaborane, like pentaborane, is a powerful toxin affecting the central nervous system, although decaborane is less toxic than pentaborane. It can be absorbed through skin.

Purification by sublimation require a dynamic vacuum to remove evolved gases. Crude samples explode near 100 °C. [6]

It forms an explosive mixture with carbon tetrachloride, which caused an often-mentioned explosion in a manufacturing facility. [10]

In crystalline form, it reacts violently with red and white fuming nitric acid which has a use as rocket fuel oxidizer, producing an extremely powerful detonation. [11]


Related Research Articles

<span class="mw-page-title-main">Boranes</span>

A borane is a compound with the formula BxHy or a related anion. Many such boranes are known. Most common are those with 1 to 12 boron atoms. Although they have few practical applications, the boranes exhibit structures and bonding that differs strongly from the patterns seen in hydrocarbons. Hybrids of boranes and hydrocarbons, the carboranes are also well developed.

<span class="mw-page-title-main">Diborane</span> Chemical compound

Diborane(6), commonly known as diborane, is the chemical compound with the formula B2H6. It is a toxic, colorless, and pyrophoric gas with a repulsively sweet odor. Given its simple formula, borane is a fundamental boron compound. It has attracted wide attention for its electronic structure. Several of its derivatives are useful reagents.

<span class="mw-page-title-main">Pentaborane(9)</span> Chemical compound

Pentaborane(9) is an inorganic compound with the formula B5H9. It is one of the most common boron hydride clusters, although it is a highly reactive compound. Because of its high reactivity with oxygen, it was once evaluated as rocket or jet fuel. Like many of the smaller boron hydrides, pentaborane is colourless, diamagnetic, and volatile. It is related to pentaborane(11).

<span class="mw-page-title-main">Carborane</span> Class of chemical compounds

Carboranes are electron-delocalized clusters composed of boron, carbon and hydrogen atoms. Like many of the related boron hydrides, these clusters are polyhedra or fragments of polyhedra. Carboranes are one class of heteroboranes.

<span class="mw-page-title-main">Hexaborane(10)</span> Chemical compound

Hexaborane, also called hexaborane(10) to distinguish it from hexaborane(12) (B6H12), is an inorganic compound with the formula B6H10. It is a colorless liquid that is unstable in air.

In chemistry the polyhedral skeletal electron pair theory (PSEPT) provides electron counting rules useful for predicting the structures of clusters such as borane and carborane clusters. The electron counting rules were originally formulated by Kenneth Wade, and were further developed by others including Michael Mingos; they are sometimes known as Wade's rules or the Wade–Mingos rules. The rules are based on a molecular orbital treatment of the bonding. These rules have been extended and unified in the form of the Jemmis mno rules.

<span class="mw-page-title-main">Boron compounds</span>

Boron compounds are compounds containing the element boron. In the most familiar compounds, boron has the formal oxidation state +3. These include oxides, sulfides, nitrides, and halides.

<span class="mw-page-title-main">Caesium dodecaborate</span> Chemical compound

Caesium dodecaborate is an inorganic compound with the formula Cs2B12H12. It is a salt composed of caesium and dodecaborate(12) ions. The [B12H12]2− anion has been of great theoretical interest to the chemistry community.

<span class="mw-page-title-main">Dicarbollide</span> Chemical compound

In organometallic chemistry, a dicarbollide is an anion of the formula [C2B9H11]2-. Various isomers exist, but most common is 1,2-dicarbollide derived from ortho-carborane. These dianions function as ligands, related to the cyclopentadienyl anion. Substituted dicarbollides are also known such as [C2B9H10(pyridine)] (pyridine bonded to B) and [C2R2B9H9]2- (R groups bonded to carbon).

<span class="mw-page-title-main">Carborane acid</span> Class of chemical compounds

Carborane acidsH(CXB
11
Y
5
Z
6
)
(X, Y, Z = H, Alk, F, Cl, Br, CF3) are a class of superacids, some of which are estimated to be at least one million times stronger than 100% pure sulfuric acid in terms of their Hammett acidity function values (H0 ≤ –18) and possess computed pKa values well below –20, establishing them as some of the strongest known Brønsted acids. The best-studied example is the highly chlorinated derivative H(CHB
11
Cl
11
)
. The acidity of H(CHB
11
Cl
11
)
was found to vastly exceed that of triflic acid, CF
3
SO
3
H
, and bistriflimide, (CF
3
SO
2
)
2
NH
, compounds previously regarded as the strongest isolable acids.

Borane, also known as borine, is an unstable and highly reactive molecule with the chemical formula BH
3
. The preparation of borane carbonyl, BH3(CO), played an important role in exploring the chemistry of boranes, as it indicated the likely existence of the borane molecule. However, the molecular species BH3 is a very strong Lewis acid. Consequently, it is highly reactive and can only be observed directly as a continuously produced, transitory, product in a flow system or from the reaction of laser ablated atomic boron with hydrogen. It normally dimerizes to diborane in the absence of other chemicals.

<span class="mw-page-title-main">Azaborane</span>

Azaborane usually refers a borane cluster where BH vertices are replaced by N or NR. Like many of the related boranes, these clusters are polyhedra and can be classified as closo-, nido-, arachno-, etc..

<span class="mw-page-title-main">Pentaborane(11)</span> Chemical compound

Pentaborane(11) is inorganic compound with the chemical formula B5H11. It is an obscure boron hydride cluster, especially relative to the heavily studied pentaborane(9) (B5H9). With two more hydrogen atoms than nido-pentaborane(9), pentaborane(11) is classified as an arachno- cluster.

<span class="mw-page-title-main">Dodecaborate</span> Chemical compound

The dodecaborate(12) anion, [B12H12]2−, is a borane with an icosahedral arrangement of 12 boron atoms, with each boron atom being attached to a hydrogen atom. Its symmetry is classified by the molecular point group Ih.

<span class="mw-page-title-main">1,2-Dimethyldiborane</span> Chemical compound

1,2-Dimethyldiborane is an organoboron compound with the formula [(CH3)BH2]2. Structurally, it is related to diborane, but with methyl groups replacing terminal hydrides on each boron. It is the dimer of methylborane, CH3BH2, the simplest alkylborane. 1,2-Dimethyldiborane can exist in a cis- and a trans arrangement. 1,2-Dimethyldiborane is an easily condensed, colorless gas that ignites spontaneously in air.

<span class="mw-page-title-main">Hexaborane(12)</span> Chemical compound

Hexaborane(12) is an inorganic compound with the formula B6H12. It is an obscure member of the boranes. It is a colorless liquid that, like most boron hydrides, is readily hydrolyzed and flammable.

Heteroboranes are classes of boranes in which at least one boron atom is replaced by another elements. Like many of the related boranes, these clusters are polyhedra and are similarly classified as closo-, nido-, arachno-, and hypho-, according to the so-called electron count. Closo- represents a complete polyhedron, while nido-, arachno- and hypho- stand for polyhedrons that are missing one, two and three vertices.

<i>ortho</i>-Carborane Chemical compound

ortho-Carborane is the organoboron compound with the formula C2B10H12. The prefix ortho is derived from ortho. It is the most prominent carborane. This derivative has been considered for a wide range of applications from heat-resistant polymers to medical applications. It is a colorless solid that melts, without decomposition, at 320 °C

In organoboron chemistry, the Brellochs reaction provides a way to generate the monocarboranes. The use of acetylenes to insert two carbons into boron hydrides is well established. The Brellochs method uses formaldehyde to insert single carbon atoms into boron hydrides.

<span class="mw-page-title-main">Metallaborane</span>

In chemistry, a metallaborane is a compound that contains one or more metal atoms and one or more boron hydride. These compounds are related conceptually and often synthetically to the boron-hydride clusters by replacement of BHn units with metal-containing fragments. Often these metal fragments are derived from metal carbonyls or cyclopentadienyl complexes. Their structures can often be rationalized by polyhedral skeletal electron pair theory. The inventory of these compounds is large, and their structures can be quite complex.

References

  1. 1 2 3 4 5 6 7 NIOSH Pocket Guide to Chemical Hazards. "#0175". National Institute for Occupational Safety and Health (NIOSH).
  2. "Decaborane". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. 1 2 Gary B. Dunks, Kathy Palmer-Ordonez, Eddie Hedaya "Decaborane(14)" Inorg. Synth. 1983, vol. 22, pp. 202–207. doi : 10.1002/9780470132531.ch46
  4. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  5. Charles R. Kutal; David A. Owen; Lee J. Todd (1968). "closo -1,2-Dicarbadodecaborane(12): [1,2-Dicarbaclovododecaborane(12 )]". Inorganic Syntheses. Vol. 11. pp. 19–24. doi:10.1002/9780470132425.ch5. ISBN   978-0-470-13170-1.
  6. 1 2 M. Frederick Hawthorne; Timothy D. Andrews; Philip M. Garrett; Fred P. Olsen; Marten Reintjes; Fred N. Tebbe; Les F. Warren; Patrick A. Wegner; Donald C. Young (1967). "Icosahedral Carboranes and Intermediates Leading to the Preparation of Carbametallic Boron Hydride Derivatives". Inorganic Syntheses. Vol. 10. pp. 91–118. doi:10.1002/9780470132418.ch17. ISBN   978-0-470-13241-8.
  7. Jong Woo Bae; Seung Hwan Lee; Young Jin Cho; Cheol Min Yoon (2000). "A reductive amination of carbonyls with amines using decaborane in methanol". J. Chem. Soc., Perkin Trans. 1 (2): 145–146. doi:10.1039/A909506C.
  8. Nakano, T.; Higashijima, S.; Kubo, H.; Yagyu, J.; Arai, T.; Asakura, N.; Itami, K. "Boronization effects using deuterated-decaborane (B10D14) in JT-60U". 15th PSI Gifu, P1-05. Sokendai, Japan: National Institute for Fusion Science. Archived from the original on 2004-05-30.
  9. Wang, Brian (2018-03-27). "LPP Fusion has funds try to reach nuclear fusion net gain milestone | NextBigFuture.com". NextBigFuture.com. Retrieved 2018-03-27.
  10. "Condensed version of the 79th Faculty Research Lecture Presented by Professor M. Frederick Hawthorne". UCLA.
  11. "The Most DESTRUCTIVE Chemical Reaction from two NON-explosive components". YouTube . 21 December 2023. YouTube video name: 'The Most DESTRUCTIVE Chemical Reaction from two NON-explosive components'

Further reading