Gateway Technology

Last updated

The Gateway cloning method, invented and commercialized by Invitrogen since the late 1990s, is the cloning method of the integration and excision recombination reactions that take place when bacteriophage lambda infects bacteria. This technology provides a fast and highly efficient way to transport DNA sequences into multi-vector systems for functional analysis and protein expression using Gateway att sites, and two proprietary enzyme mixes called BP Clonase and LR Clonase. In vivo, these recombination reactions are facilitated by the recombination of attachment sites from the lambda/phage chromosome (attP) and the bacteria (attB). As a result of recombination between the attP and attB sites, the phage integrates into the bacterial genome flanked by two new recombination sites (attLeft and attRight). The removal of the phage from the bacterial chromosome and the regeneration of attP and attB sites can both result from the attL and attR sites recombining under specific circumstances.

Contents

DNA sequences to be cloned are added to modified versions of these special Gateway Att sites. Two enzyme reactions take place, BP Clonase and LR Clonase. The BP Clonase occurs between the attB sites surrounding the insert and the attP sites of the donor vector. This reaction is catalyzed by the BP Clonase enzyme mixture and produces the entry clone containing the DNA of interest flanked by attL domains. As a byproduct of the reaction, the ccdB gene is cut from the donor vector. The LR Clonase occurs between the attL regions of the generated entry clone and the attR regions of the target vector and is catalyzed by the LR Clonase enzyme mix. As a result, an expression clone with DNA of interest flanked by attB regions is produced. As in the BP reaction, a DNA sequence containing the ccdB gene is cut from the target vector.

Large archives of Gateway Entry clones, containing the vast majority of human, mouse and rat ORFs (open reading frames) have been cloned from human cDNA libraries or chemically synthesized to support the research community using NIH (National Institutes of Health) funding (e.g., Mammalian Gene Collection, http://mgc.nci.nih.gov/). The availability of these gene cassettes in a standard Gateway cloning plasmid helps researchers quickly transfer these cassettes into plasmids that facilitate the analysis of gene function. Gateway cloning does take more time for initial set-up, and is more expensive than traditional restriction enzyme and ligase-based cloning methods, but it saves time, and offers simpler and highly efficient cloning for down-stream applications.

The technology has been widely adopted by the life science research community especially for applications that require the transfer of thousands of DNA fragments into one type of plasmid (e.g., one containing a CMV promoter for protein expression in mammalian cells), or for the transfer of one DNA fragment into many different types of plasmids (e.g., for bacterial, insect and mammalian protein expression).

Basic Steps of Cloning

The first step in Gateway cloning is the preparation of a Gateway Entry clone. There are a few different ways to make entry clone.

  1. Gateway attB1 and attB2 sequences are added to the 5' and 3' end of a gene fragment, respectively, using gene-specific PCR primers and PCR amplification. The PCR amplification products are then mixed with a proprietary mixture of plasmids called Gateway "Donor vectors" (Invitrogen terminology) and proprietary "BP Clonase" enzymes. The enzyme mix catalyzes the recombination and insertion of the PCR product containing the attB sequence into the attP recombination sites in the Gateway Donor vector. When the cassette is part of the target plasmid, it is referred to as an "Entry clone" in Gateway nomenclature and the recombination sequences are referred to as Gateway "attL" type.
  2. A short end containing attL is added using the TOPO method, a technique in which DNA fragments are cloned into specific vectors without the need for DNA ligases.
  3. The desired DNA sequence can be cloned into a multicloning site containing attL using restriction enzyme.

The second step in Gateway cloning is the preparation of a Gateway Destination vector. It is important to choose the target vector that best suits your target when preparing the expression clone. The gene cassette in the Gateway Entry clone can then be simply and efficiently transferred into any Gateway Destination vector (Invitrogen nomenclature for any Gateway plasmid that contains Gateway “attR” recombination sequences and elements such as promoters and epitope tags, but not ORFs) using the proprietary enzyme mix, “LR Clonase”. Thousands of Gateway Destination plasmids have been made and are freely shared amongst researchers across the world. Gateway Destination vectors are similar to classical expression vectors containing multiple cloning sites, before the insertion of a gene of interest, using restriction enzyme digestion and ligation. Gateway Destination vectors are commercially available from Invitrogen, EMD (Novagen) and Covalys.

The third step in Gateway cloning is the preparation of express your gene of interest. Make sure to use sequencing or a restriction digest to check the integrity of your expression clone. Once your construct is working, you can transform or transfect the cells you intend to employ in your investigations.

Since Gateway cloning uses patented recombination sequences, and proprietary enzyme mixes available only from Invitrogen, the technology does not allow researchers to switch vendors and contributes to the lock-in effect of all such patented procedures.

To summarize the different steps involved in Gateway cloning:

Advantages of the Gateway cloning method

Flexibility

Your DNA sequence of interest can be moved across any expression system in just one recombination step when you create the entry clone with it.

Speed

Instead of taking two or more days with conventional restriction and ligation cloning, the Gateway approach allows for the creation of the expression construct in just one day. The attB-PCR products can also be immediately cloned into the target vectors by performing the BP and LR reactions in the same tube. There are no procedures for restriction, ligation, or gel purification during the cloning process.

Multiple fragment cloning

Gateway cloning can be used to simultaneously insert several DNA pieces into numerous vectors in a single tube. To create the necessary expression clone, up to four DNA segments can be cloned into a single Gateway vector in a precise order and orientation in a single tube. The design of the Gateway vectors makes this possible.

High efficiency

The Gateway Cloning Method uses positive and negative selection markers to increase the chance of successfully cloning a gene. This means that the process is more efficient, meaning it is more likely to produce successful results.

Universality

All types of DNA fragments can be cloned using PCR techniques. Cloning is available for many different kinds of organisms, from mammals to bacteria.

See also

Related Research Articles

Protein engineering is the process of developing useful or valuable proteins through the design and production of unnatural polypeptides, often by altering amino acid sequences found in nature. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to improve the function of many enzymes for industrial catalysis. It is also a product and services market, with an estimated value of $168 billion by 2017.

<span class="mw-page-title-main">Cloning vector</span> Small piece of maintainable DNA

A cloning vector is a small piece of DNA that can be stably maintained in an organism, and into which a foreign DNA fragment can be inserted for cloning purposes. The cloning vector may be DNA taken from a virus, the cell of a higher organism, or it may be the plasmid of a bacterium. The vector contains features that allow for the convenient insertion of a DNA fragment into the vector or its removal from the vector, for example through the presence of restriction sites. The vector and the foreign DNA may be treated with a restriction enzyme that cuts the DNA, and DNA fragments thus generated contain either blunt ends or overhangs known as sticky ends, and vector DNA and foreign DNA with compatible ends can then be joined by molecular ligation. After a DNA fragment has been cloned into a cloning vector, it may be further subcloned into another vector designed for more specific use.

Site-directed mutagenesis is a molecular biology method that is used to make specific and intentional mutating changes to the DNA sequence of a gene and any gene products. Also called site-specific mutagenesis or oligonucleotide-directed mutagenesis, it is used for investigating the structure and biological activity of DNA, RNA, and protein molecules, and for protein engineering.

This is a list of topics in molecular biology. See also index of biochemistry articles.

A DNA construct is an artificially-designed segment of DNA borne on a vector that can be used to incorporate genetic material into a target tissue or cell. A DNA construct contains a DNA insert, called a transgene, delivered via a transformation vector which allows the insert sequence to be replicated and/or expressed in the target cell. This gene can be cloned from a naturally occurring gene, or synthetically constructed. The vector can be delivered using physical, chemical or viral methods. Typically, the vectors used in DNA constructs contain an origin of replication, a multiple cloning site, and a selectable marker. Certain vectors can carry additional regulatory elements based on the expression system involved.

A restriction digest is a procedure used in molecular biology to prepare DNA for analysis or other processing. It is sometimes termed DNA fragmentation, though this term is used for other procedures as well. In a restriction digest, DNA molecules are cleaved at specific restriction sites of 4-12 nucleotides in length by use of restriction enzymes which recognize these sequences.

<span class="mw-page-title-main">Subcloning</span>

In molecular biology, subcloning is a technique used to move a particular DNA sequence from a parent vector to a destination vector.

P elements are transposable elements that were discovered in Drosophila as the causative agents of genetic traits called hybrid dysgenesis. The transposon is responsible for the P trait of the P element and it is found only in wild flies. They are also found in many other eukaryotes.

The GFP-cDNA project documents the localisation of proteins to subcellular compartments of the eukaryotic cell applying fluorescence microscopy. Experimental data are complemented with bioinformatic analyses and published online in a database. A search function allows the finding of proteins containing features or motifs of particular interest. The project is a collaboration of the research groups of Rainer Pepperkok at the European Molecular Biology Laboratory (EMBL) and Stefan Wiemann at the German Cancer Research Centre (DKFZ).

Cre-Lox recombination is a site-specific recombinase technology, used to carry out deletions, insertions, translocations and inversions at specific sites in the DNA of cells. It allows the DNA modification to be targeted to a specific cell type or be triggered by a specific external stimulus. It is implemented both in eukaryotic and prokaryotic systems. The Cre-lox recombination system has been particularly useful to help neuroscientists to study the brain in which complex cell types and neural circuits come together to generate cognition and behaviors. NIH Blueprint for Neuroscience Research has created several hundreds of Cre driver mouse lines which are currently used by the worldwide neuroscience community.

Site-specific recombinase technologies are genome engineering tools that depend on recombinase enzymes to replace targeted sections of DNA.

<span class="mw-page-title-main">Blue–white screen</span> DNA screening technique

The blue–white screen is a screening technique that allows for the rapid and convenient detection of recombinant bacteria in vector-based molecular cloning experiments. This method of screening is usually performed using a suitable bacterial strain, but other organisms such as yeast may also be used. DNA of transformation is ligated into a vector. The vector is then inserted into a competent host cell viable for transformation, which are then grown in the presence of X-gal. Cells transformed with vectors containing recombinant DNA will produce white colonies; cells transformed with non-recombinant plasmids grow into blue colonies.

P1 is a temperate bacteriophage that infects Escherichia coli and some other bacteria. When undergoing a lysogenic cycle the phage genome exists as a plasmid in the bacterium unlike other phages that integrate into the host DNA. P1 has an icosahedral head containing the DNA attached to a contractile tail with six tail fibers. The P1 phage has gained research interest because it can be used to transfer DNA from one bacterial cell to another in a process known as transduction. As it replicates during its lytic cycle it captures fragments of the host chromosome. If the resulting viral particles are used to infect a different host the captured DNA fragments can be integrated into the new host's genome. This method of in vivo genetic engineering was widely used for many years and is still used today, though to a lesser extent. P1 can also be used to create the P1-derived artificial chromosome cloning vector which can carry relatively large fragments of DNA. P1 encodes a site-specific recombinase, Cre, that is widely used to carry out cell-specific or time-specific DNA recombination by flanking the target DNA with loxP sites.

Artificial gene synthesis, or simply gene synthesis, refers to a group of methods that are used in synthetic biology to construct and assemble genes from nucleotides de novo. Unlike DNA synthesis in living cells, artificial gene synthesis does not require template DNA, allowing virtually any DNA sequence to be synthesized in the laboratory. It comprises two main steps, the first of which is solid-phase DNA synthesis, sometimes known as DNA printing. This produces oligonucleotide fragments that are generally under 200 base pairs. The second step then involves connecting these oligonucleotide fragments using various DNA assembly methods. Because artificial gene synthesis does not require template DNA, it is theoretically possible to make a completely synthetic DNA molecule with no limits on the nucleotide sequence or size.

<span class="mw-page-title-main">Functional cloning</span>

Functional cloning is a molecular cloning technique that relies on prior knowledge of the encoded protein’s sequence or function for gene identification. In this assay, a genomic or cDNA library is screened to identify the genetic sequence of a protein of interest. Expression cDNA libraries may be screened with antibodies specific for the protein of interest or may rely on selection via the protein function. Historically, the amino acid sequence of a protein was used to prepare degenerate oligonucleotides which were then probed against the library to identify the gene encoding the protein of interest. Once candidate clones carrying the gene of interest are identified, they are sequenced and their identity is confirmed. This method of cloning allows researchers to screen entire genomes without prior knowledge of the location of the gene or the genetic sequence.

In molecular cloning, a vector is any particle used as a vehicle to artificially carry a foreign nucleic sequence – usually DNA – into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors are an origin of replication, a multicloning site, and a selectable marker.

<span class="mw-page-title-main">Molecular cloning</span> Set of methods in molecular biology


Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA. Molecular cloning methods are central to many contemporary areas of modern biology and medicine.

<span class="mw-page-title-main">In vitro recombination</span> Process of isolation and amplification of DNA segments

Recombinant DNA (rDNA), or molecular cloning, is the process by which a single gene, or segment of DNA, is isolated and amplified. Recombinant DNA is also known as in vitro recombination. A cloning vector is a DNA molecule that carries foreign DNA into a host cell, where it replicates, producing many copies of itself along with the foreign DNA. There are many types of cloning vectors such as plasmids and phages. In order to carry out recombination between vector and the foreign DNA, it is necessary the vector and DNA to be cloned by digestion, ligase the foreign DNA into the vector with the enzyme DNA ligase. And DNA is inserted by introducing the DNA into bacteria cells by transformation.

<span class="mw-page-title-main">Ligation (molecular biology)</span>

Ligation is the joining of two nucleic acid fragments through the action of an enzyme. It is an essential laboratory procedure in the molecular cloning of DNA, whereby DNA fragments are joined to create recombinant DNA molecules (such as when a foreign DNA fragment is inserted into a plasmid). The ends of DNA fragments are joined by the formation of phosphodiester bonds between the 3'-hydroxyl of one DNA terminus with the 5'-phosphoryl of another. RNA may also be ligated similarly. A co-factor is generally involved in the reaction, and this is usually ATP or NAD+. Eukaryotic cells ligases belong to ATP type, and NAD+ - dependent are found in bacteria (e.g. E. coli).

<span class="mw-page-title-main">Golden Gate Cloning</span>

Golden Gate Cloning or Golden Gate assembly is a molecular cloning method that allows a researcher to simultaneously and directionally assemble multiple DNA fragments into a single piece using Type IIS restriction enzymes and T4 DNA ligase. This assembly is performed in vitro. Most commonly used Type IIS enzymes include BsaI, BsmBI, and BbsI.

References